首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Identifying Behaviors in Crowd Scenes Using Stability Analysis for Dynamical Systems
【24h】

Identifying Behaviors in Crowd Scenes Using Stability Analysis for Dynamical Systems

机译:使用动态系统稳定性分析识别人群场景中的行为

获取原文
获取原文并翻译 | 示例

摘要

A method is proposed for identifying five crowd behaviors (bottlenecks, fountainheads, lanes, arches, and blocking) in visual scenes. In the algorithm, a scene is overlaid by a grid of particles initializing a dynamical system defined by the optical flow. Time integration of the dynamical system provides particle trajectories that represent the motion in the scene; these trajectories are used to locate regions of interest in the scene. Linear approximation of the dynamical system provides behavior classification through the Jacobian matrix; the eigenvalues determine the dynamic stability of points in the flow and each type of stability corresponds to one of the five crowd behaviors. The eigenvalues are only considered in the regions of interest, consistent with the linear approximation and the implicated behaviors. The algorithm is repeated over sequential clips of a video in order to record changes in eigenvalues, which may imply changes in behavior. The method was tested on over 60 crowd and traffic videos.
机译:提出了一种识别视觉场景中五种人群行为(瓶颈,喷泉头,车道,拱门和障碍物)的方法。在该算法中,场景被粒子网格覆盖,从而初始化了由光流定义的动力学系统。动力系统的时间积分提供了代表场景中运动的粒子轨迹。这些轨迹用于定位场景中感兴趣的区域。动力学系统的线性逼近通过雅可比矩阵提供行为分类。特征值确定流中各点的动态稳定性,每种类型的稳定性对应于五种人群行为之一。仅在感兴趣的区域中考虑特征值,这与线性逼近和所涉及的行为一致。在视频的连续剪辑上重复该算法,以记录特征值的变化,这可能意味着行为发生变化。该方法已在60多个人群和交通视频上进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号