首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Combining Scale-Space and Similarity-Based Aspect Graphs for Fast 3D Object Recognition
【24h】

Combining Scale-Space and Similarity-Based Aspect Graphs for Fast 3D Object Recognition

机译:结合比例空间和基于相似度的方面图进行快速3D对象识别

获取原文
获取原文并翻译 | 示例

摘要

This paper describes an approach for recognizing instances of a 3D object in a single camera image and for determining their 3D poses. A hierarchical model is generated solely based on the geometry information of a 3D CAD model of the object. The approach does not rely on texture or reflectance information of the object's surface, making it useful for a wide range of industrial and robotic applications, e.g., bin-picking. A hierarchical view-based approach that addresses typical problems of previous methods is applied: It handles true perspective, is robust to noise, occlusions, and clutter to an extent that is sufficient for many practical applications, and is invariant to contrast changes. For the generation of this hierarchical model, a new model image generation technique by which scale-space effects can be taken into account is presented. The necessary object views are derived using a similarity-based aspect graph. The high robustness of an exhaustive search is combined with an efficient hierarchical search. The 3D pose is refined by using a least-squares adjustment that minimizes geometric distances in the image, yielding a position accuracy of up to 0.12 percent with respect to the object distance, and an orientation accuracy of up to 0.35 degree in our tests. The recognition time is largely independent of the complexity of the object, but depends mainly on the range of poses within which the object may appear in front of the camera. For efficiency reasons, the approach allows the restriction of the pose range depending on the application. Typical runtimes are in the range of a few hundred ms.
机译:本文介绍了一种在单个摄像机图像中识别3D对象实例并确定其3D姿势的方法。仅根据对象的3D CAD模型的几何信息生成层次模型。该方法不依赖于对象表面的纹理或反射率信息,从而使其可用于各种工业和机器人应用,例如垃圾箱拾取。应用了一种基于层次视图的方法,该方法解决了先前方法的典型问题:它处理真实的透视图,对噪声,遮挡和杂波具有鲁棒性,足以在许多实际应用中使用,并且不会改变对比度。为了生成该分层模型,提出了一种新的模型图像生成技术,通过该技术可以考虑比例空间效应。必要的对象视图是使用基于相似度的方面图得出的。穷举搜索的高鲁棒性与高效的分层搜索结合在一起。通过使用最小二乘法调整来优化3D姿势,该调整可最小化图像中的几何距离,在我们的测试中,相对于物距,位置精度最高为0.12%,方向精度最高为0.35度。识别时间在很大程度上与物体的复杂性无关,但主要取决于物体可能出现在相机前面的姿势范围。由于效率的原因,该方法允许根据应用限制姿势范围。典型的运行时间在几百毫秒的范围内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号