首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Scribble Tracker: A Matting-Based Approach for Robust Tracking
【24h】

Scribble Tracker: A Matting-Based Approach for Robust Tracking

机译:自由曲线跟踪器:基于抠图的稳健跟踪方法

获取原文
获取原文并翻译 | 示例

摘要

Model updating is a critical problem in tracking. Inaccurate extraction of the foreground and background information in model adaptation would cause the model to drift and degrade the tracking performance. The most direct yet difficult solution to the drift problem is to obtain accurate boundaries of the target. We approach such a solution by proposing a novel model adaptation framework based on the combination of matting and tracking. In our framework, coarse tracking results automatically provide sufficient and accurate scribbles for matting, which makes matting applicable in a tracking system. Meanwhile, accurate boundaries of the target can be obtained from matting results even when the target has large deformation. An effective model combining short-term features and long-term appearances is further constructed and successfully updated based on such accurate boundaries. The model can successfully handle occlusion by explicit inference. Extensive experiments show that our adaptation scheme largely avoids model drift and significantly outperforms other discriminative tracking models.
机译:模型更新是跟踪中的关键问题。在模型自适应中对前景和背景信息的不正确提取会导致模型漂移并降低跟踪性能。解决漂移问题的最直接但最困难的方法是获得目标的准确边界。我们通过提出一种基于消光和跟踪相结合的新颖的模型适应框架来实现这种解决方案。在我们的框架中,粗略的跟踪结果会自动为遮罩提供足够且准确的涂抹,从而使遮罩适用于跟踪系统。同时,即使目标变形较大,也可以从消光结果中获得目标的精确边界。基于这样的精确边界,可以进一步构建并结合短期特征和长期外观的有效模型,并成功进行更新。该模型可以通过显式推断成功处理遮挡。大量的实验表明,我们的自适应方案在很大程度上避免了模型漂移,并且明显优于其他判别式跟踪模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号