首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Semi-Supervised Video Segmentation Using Tree Structured Graphical Models
【24h】

Semi-Supervised Video Segmentation Using Tree Structured Graphical Models

机译:使用树结构图形模型的半监督视频分割

获取原文
获取原文并翻译 | 示例

摘要

We present a novel patch-based probabilistic graphical model for semi-supervised video segmentation. At the heart of our model is a temporal tree structure that links patches in adjacent frames through the video sequence. This permits exact inference of pixel labels without resorting to traditional short time window-based video processing or instantaneous decision making. The input to our algorithm is labeled key frame(s) of a video sequence and the output is pixel-wise labels along with their confidences. We propose an efficient inference scheme that performs exact inference over the temporal tree, and optionally a per frame label smoothing step using loopy BP, to estimate pixel-wise labels and their posteriors. These posteriors are used to learn pixel unaries by training a Random Decision Forest in a semi-supervised manner. These unaries are used in a second iteration of label inference to improve the segmentation quality. We demonstrate the efficacy of our proposed algorithm using several qualitative and quantitative tests on both foreground/background and multiclass video segmentation problems using publicly available and our own datasets.
机译:我们提出了一种新型的基于补丁的半监督视频分割概率图形模型。模型的核心是时间树结构,该结构通过视频序列链接相邻帧中的色块。这允许精确推断像素标签,而无需借助传统的基于短时窗口的短视频处理或即时决策。我们算法的输入被标记为视频序列的关键帧,而输出则是像素方向的标签及其置信度。我们提出了一种有效的推理方案,该方案可对时间树执行精确的推理,并可选地使用循环BP对每帧标签进行平滑处理,以估计逐个像素标签及其后代。这些后验者通过以半监督方式训练随机决策森林来学习像素一元算法。这些一元代码用于标签推断的第二次迭代中,以提高分割质量。我们使用公开可用的和我们自己的数据集,对前景/背景和多类视频分割问题进行了几次定性和定量测试,证明了我们提出的算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号