首页> 外文期刊>IEEE Transactions on Image Processing >Spatiotemporal video segmentation based on graphical models
【24h】

Spatiotemporal video segmentation based on graphical models

机译:基于图形模型的时空视频分割

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a probabilistic framework for spatiotemporal segmentation of video sequences. Motion information, boundary information from intensity segmentation, and spatial connectivity of segmentation are unified in the video segmentation process by means of graphical models. A Bayesian network is presented to model interactions among the motion vector field, the intensity segmentation field, and the video segmentation field. The notion of the Markov random field is used to encourage the formation of continuous regions. Given consecutive frames, the conditional joint probability density of the three fields is maximized in an iterative way. To effectively utilize boundary information from the intensity segmentation, distance transformation is employed in local objective functions. Experimental results show that the method is robust and generates spatiotemporally coherent segmentation results. Moreover, the proposed video segmentation approach can be viewed as the compromise of previous motion based approaches and region merging approaches.
机译:本文提出了一种用于视频序列的时空分割的概率框架。运动信息,来自强度分割的边界信息以及分割的空间连通性通过图形模型在视频分割过程中得以统一。提出了贝叶斯网络以对运动矢量场,强度分割场和视频分割场之间的相互作用进行建模。马尔可夫随机场的概念用于鼓励连续区域的形成。在给定连续帧的情况下,三个字段的条件联合概率密度以迭代方式最大化。为了有效地利用强度分割中的边界信息,在局部目标函数中采用了距离变换。实验结果表明,该方法是鲁棒的,可产生时空相干分割结果。此外,所提出的视频分割方法可以看作是先前基于运动的方法和区域合并方法的折衷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号