首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Facial Age Estimation by Learning from Label Distributions
【24h】

Facial Age Estimation by Learning from Label Distributions

机译:通过标签分布学习来估计面部年龄

获取原文
获取原文并翻译 | 示例

摘要

One of the main difficulties in facial age estimation is that the learning algorithms cannot expect sufficient and complete training data. Fortunately, the faces at close ages look quite similar since aging is a slow and smooth process. Inspired by this observation, instead of considering each face image as an instance with one label (age), this paper regards each face image as an instance associated with a label distribution. The label distribution covers a certain number of class labels, representing the degree that each label describes the instance. Through this way, one face image can contribute to not only the learning of its chronological age, but also the learning of its adjacent ages. Two algorithms, named IIS-LLD and CPNN, are proposed to learn from such label distributions. Experimental results on two aging face databases show remarkable advantages of the proposed label distribution learning algorithms over the compared single-label learning algorithms, either specially designed for age estimation or for general purpose.
机译:面部年龄估计的主要困难之一是学习算法无法期望足够和完整的训练数据。幸运的是,由于衰老是一个缓慢而平滑的过程,因此接近衰老的面孔看起来非常相似。受此观察启发,本文没有将每个面部图像视为带有一个标签(年龄)的实例,而是将每个面部图像视为与标签分布相关联的实例。标签分布涵盖一定数量的类标签,代表每个标签描述实例的程度。通过这种方式,一个人脸图像不仅有助于其年代年龄的学习,而且有助于其邻近年龄的学习。提出了两种名为IIS-LLD和CPNN的算法,以从此类标签分布中学习。在两个衰老的人脸数据库上的实验结果表明,与为年龄估计或通用设计的单标签学习算法相比,所提出的标签分布学习算法具有明显的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号