首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Handwritten Chinese/Japanese Text Recognition Using Semi-Markov Conditional Random Fields
【24h】

Handwritten Chinese/Japanese Text Recognition Using Semi-Markov Conditional Random Fields

机译:使用半马尔可夫条件随机场的手写中日文本识别

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a method for handwritten Chinese/Japanese text (character string) recognition based on semi-Markov conditional random fields (semi-CRFs). The high-order semi-CRF model is defined on a lattice containing all possible segmentation-recognition hypotheses of a string to elegantly fuse the scores of candidate character recognition and the compatibilities of geometric and linguistic contexts by representing them in the feature functions. Based on given models of character recognition and compatibilities, the fusion parameters are optimized by minimizing the negative log-likelihood loss with a margin term on a training string sample set. A forward-backward lattice pruning algorithm is proposed to reduce the computation in training when trigram language models are used, and beam search techniques are investigated to accelerate the decoding speed. We evaluate the performance of the proposed method on unconstrained online handwritten text lines of three databases. On the test sets of databases CASIA-OLHWDB (Chinese) and TUAT Kondate (Japanese), the character level correct rates are 95.20 and 95.44 percent, and the accurate rates are 94.54 and 94.55 percent, respectively. On the test set (online handwritten texts) of ICDAR 2011 Chinese handwriting recognition competition, the proposed method outperforms the best system in competition.
机译:提出了一种基于半马尔可夫条件随机场(semi-CRFs)的手写汉日文本(字符串)识别方法。高阶半CRF模型定义在包含所有可能的字符串分段识别假设的网格上,以通过在特征函数中表示候选字符识别分数以及几何和语言环境的兼容性来优雅地融合这些分数。基于给定的字符识别和兼容性模型,通过使用训练字符串样本集上的边际项最小化对数似然似然性损失来优化融合参数。提出了一种前向-后向格删减算法,以减少使用Trigram语言模型训练时的计算量,并研究了波束搜索技术以加快解码速度。我们在三个数据库的无约束在线手写文本行上评估了该方法的性能。在数据库CASIA-OLHWDB(中文)和TUAT Kondate(日语)的测试集上,字符级正确率分别为95.20和95.44%,准确率分别为94.54和94.55%。在ICDAR 2011中国手写识别比赛的测试集(在线手写文本)上,提出的方法优于最佳比赛系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号