首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Multiscale Local Phase Quantization for Robust Component-Based Face Recognition Using Kernel Fusion of Multiple Descriptors
【24h】

Multiscale Local Phase Quantization for Robust Component-Based Face Recognition Using Kernel Fusion of Multiple Descriptors

机译:基于多描述符核融合的鲁棒基于组件的多尺度局部相位量化

获取原文
获取原文并翻译 | 示例

摘要

Face recognition subject to uncontrolled illumination and blur is challenging. Interestingly, image degradation caused by blurring, often present in real-world imagery, has mostly been overlooked by the face recognition community. Such degradation corrupts face information and affects image alignment, which together negatively impact recognition accuracy. We propose a number of countermeasures designed to achieve system robustness to blurring. First, we propose a novel blur-robust face image descriptor based on Local Phase Quantization (LPQ) and extend it to a multiscale framework (MLPQ) to increase its effectiveness. To maximize the insensitivity to misalignment, the MLPQ descriptor is computed regionally by adopting a component-based framework. Second, the regional features are combined using kernel fusion. Third, the proposed MLPQ representation is combined with the Multiscale Local Binary Pattern (MLBP) descriptor using kernel fusion to increase insensitivity to illumination. Kernel Discriminant Analysis (KDA) of the combined features extracts discriminative information for face recognition. Last, two geometric normalizations are used to generate and combine multiple scores from different face image scales to further enhance the accuracy. The proposed approach has been comprehensively evaluated using the combined Yale and Extended Yale database B (degraded by artificially induced linear motion blur) as well as the FERET, FRGC 2.0, and LFW databases. The combined system is comparable to state-of-the-art approaches using similar system configurations. The reported work provides a new insight into the merits of various face representation and fusion methods, as well as their role in dealing with variable lighting and blur degradation.
机译:面对不受控制的照明和模糊的人脸识别具有挑战性。有趣的是,现实世界中经常出现的由模糊引起的图像质量下降已被人脸识别社区所忽视。这种降级会破坏人脸信息并影响图像对齐,这会对识别精度产生负面影响。我们提出了许多旨在实现系统对模糊的鲁棒性的对策。首先,我们提出了一种基于局部相位量化(LPQ)的新颖的模糊鲁棒人脸图像描述符,并将其扩展到多尺度框架(MLPQ)以提高其有效性。为了最大化对未对准的不敏感性,通过采用基于组件的框架来局部计算MLPQ描述符。其次,使用核融合将区域特征进行组合。第三,使用内核融合将建议的MLPQ表示与多尺度局部二进制模式(MLBP)描述符组合起来,以增加对照明的不敏感性。组合特征的核判别分析(KDA)提取判别信息以进行人脸识别。最后,使用两个几何规格化来生成和组合来自不同面部图像比例的多个得分,以进一步提高准确性。使用组合的Yale和Extended Yale数据库B(由人为引起的线性运动模糊进行降级)以及FERET,FRGC 2.0和LFW数据库,对提出的方法进行了全面评估。组合系统可与使用类似系统配置的最新方法相媲美。报告的工作为各种面部表示和融合方法的优点及其在处理可变照明和模糊降级中的作用提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号