首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >An Incremental DPMM-Based Method for Trajectory Clustering, Modeling, and Retrieval
【24h】

An Incremental DPMM-Based Method for Trajectory Clustering, Modeling, and Retrieval

机译:基于增量式DPMM的轨迹聚类,建模和检索方法

获取原文
获取原文并翻译 | 示例

摘要

Trajectory analysis is the basis for many applications, such as indexing of motion events in videos, activity recognition, and surveillance. In this paper, the Dirichlet process mixture model (DPMM) is applied to trajectory clustering, modeling, and retrieval. We propose an incremental version of a DPMM-based clustering algorithm and apply it to cluster trajectories. An appropriate number of trajectory clusters is determined automatically. When trajectories belonging to new clusters arrive, the new clusters can be identified online and added to the model without any retraining using the previous data. A time-sensitive Dirichlet process mixture model (tDPMM) is applied to each trajectory cluster for learning the trajectory pattern which represents the time-series characteristics of the trajectories in the cluster. Then, a parameterized index is constructed for each cluster. A novel likelihood estimation algorithm for the tDPMM is proposed, and a trajectory-based video retrieval model is developed. The tDPMM-based probabilistic matching method and the DPMM-based model growing method are combined to make the retrieval model scalable and adaptable. Experimental comparisons with state-of-the-art algorithms demonstrate the effectiveness of our algorithm.
机译:轨迹分析是许多应用程序的基础,例如视频中运动事件的索引编制,活动识别和监视。本文将Dirichlet过程混合模型(DPMM)应用于轨迹聚类,建模和检索。我们提出了基于DPMM的聚类算法的增量版本,并将其应用于聚类轨迹。自动确定适当数量的轨迹簇。当属于新聚类的轨迹到达时,可以在线识别新聚类并将其添加到模型中,而无需使用先前的数据进行任何重新训练。将时间敏感的狄利克雷过程混合模型(tDPMM)应用于每个轨迹簇,以学习代表簇中轨迹的时间序列特征的轨迹模式。然后,为每个群集构造一个参数化索引。提出了一种新的tDPMM似然估计算法,并建立了基于轨迹的视频检索模型。基于tDPMM的概率匹配方法和基于DPMM的模型增长方法相结合,使检索模型具有可扩展性和适应性。与最新算法的实验比较证明了我们算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号