首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Wang-Landau Monte Carlo-Based Tracking Methods for Abrupt Motions
【24h】

Wang-Landau Monte Carlo-Based Tracking Methods for Abrupt Motions

机译:基于Wang-Landau Monte Carlo的突然运动跟踪方法

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel tracking algorithm based on the Wang-Landau Monte Carlo (WLMC) sampling method for dealing with abrupt motions efficiently. Abrupt motions cause conventional tracking methods to fail because they violate the motion smoothness constraint. To address this problem, we introduce the Wang-Landau sampling method and integrate it into a Markov Chain Monte Carlo (MCMC)-based tracking framework. By employing the novel density-of-states term estimated by the Wang-Landau sampling method into the acceptance ratio of MCMC, our WLMC-based tracking method alleviates the motion smoothness constraint and robustly tracks the abrupt motions. Meanwhile, the marginal likelihood term of the acceptance ratio preserves the accuracy in tracking smooth motions. The method is then extended to obtain good performance in terms of scalability, even on a high-dimensional state space. Hence, it covers drastic changes in not only position but also scale of a target. To achieve this, we modify our method by combining it with the N-fold way algorithm and present the N-Fold Wang-Landau (NFWL)-based tracking method. The N-fold way algorithm helps estimate the density-of-states with a smaller number of samples. Experimental results demonstrate that our approach efficiently samples the states of the target, even in a whole state space, without loss of time, and tracks the target accurately and robustly when position and scale are changing severely.
机译:我们提出了一种基于Wang-Landau Monte Carlo(WLMC)采样方法的新颖跟踪算法,可以有效地处理突然的运动。突然的运动会导致传统的跟踪方法失败,因为它们违反了运动平滑度约束。为了解决此问题,我们介绍了Wang-Landau采样方法,并将其集成到基于Markov蒙特卡洛(MCMC)的跟踪框架中。通过将Wang-Landau抽样方法估算出的新的状态密度项应用于MCMC的接受率,我们基于WLMC的跟踪方法减轻了运动平滑度约束,并可靠地跟踪了突变运动。同时,接受率的边际似然项保留了跟踪平滑运动的准确性。然后扩展该方法,即使在高维状态空间上,也可以在可伸缩性方面获得良好的性能。因此,它不仅覆盖了目标位置的巨大变化,而且还覆盖了目标的规模。为此,我们将其与N折路算法相结合来修改我们的方法,并提出了基于N折Wang-Landau(NFWL)的跟踪方法。 N折法算法有助于以更少的样本数量估计状态密度。实验结果表明,即使在整个状态空间中,我们的方法也可以有效地对目标状态进行采样,而不会浪费时间,并且当位置和比例发生剧烈变化时,可以准确,可靠地跟踪目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号