首页> 外文期刊>Image Processing, IEEE Transactions on >Abrupt Motion Tracking Via Intensively Adaptive Markov-Chain Monte Carlo Sampling
【24h】

Abrupt Motion Tracking Via Intensively Adaptive Markov-Chain Monte Carlo Sampling

机译:通过强烈自适应马尔可夫链蒙特卡洛采样的突然运动跟踪

获取原文
获取原文并翻译 | 示例

摘要

The robust tracking of abrupt motion is a challenging task in computer vision due to its large motion uncertainty. While various particle filters and conventional Markov-chain Monte Carlo (MCMC) methods have been proposed for visual tracking, these methods often suffer from the well-known local-trap problem or from poor convergence rate. In this paper, we propose a novel sampling-based tracking scheme for the abrupt motion problem in the Bayesian filtering framework. To effectively handle the local-trap problem, we first introduce the stochastic approximation Monte Carlo (SAMC) sampling method into the Bayesian filter tracking framework, in which the filtering distribution is adaptively estimated as the sampling proceeds, and thus, a good approximation to the target distribution is achieved. In addition, we propose a new MCMC sampler with intensive adaptation to further improve the sampling efficiency, which combines a density-grid-based predictive model with the SAMC sampling, to give a proposal adaptation scheme. The proposed method is effective and computationally efficient in addressing the abrupt motion problem. We compare our approach with several alternative tracking algorithms, and extensive experimental results are presented to demonstrate the effectiveness and the efficiency of the proposed method in dealing with various types of abrupt motions.
机译:由于剧烈的运动不确定性,对剧烈运动的鲁棒跟踪在计算机视觉中是一项艰巨的任务。尽管已经提出了各种粒子过滤器和常规的马尔可夫链蒙特卡罗(MCMC)方法进行视觉跟踪,但是这些方法通常会遇到众所周知的局部陷阱问题或收敛速度较差的问题。在本文中,我们针对贝叶斯滤波框架中的突然运动问题提出了一种新颖的基于采样的跟踪方案。为了有效地解决局部陷阱问题,我们首先将随机近似蒙特卡洛(SAMC)采样方法引入贝叶斯滤波器跟踪框架,该模型中随着采样的进行自适应地估计滤波分布,因此,对目标分配已实现。此外,我们提出了一种新的具有较强适应性的MCMC采样器,以进一步提高采样效率,将基于密度网格的预测模型与SAMC采样相结合,从而提出了一种适应方案。所提出的方法在解决突然运动问题方面是有效的并且在计算上是有效的。我们将我们的方法与几种替代跟踪算法进行了比较,并给出了广泛的实验结果,以证明该方法在处理各种类型的突然运动中的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号