首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation
【24h】

Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation

机译:通过检测低秩表示中的邻近值来检测运动对象

获取原文
获取原文并翻译 | 示例

摘要

Object detection is a fundamental step for automated video analysis in many vision applications. Object detection in a video is usually performed by object detectors or background subtraction techniques. Often, an object detector requires manually labeled examples to train a binary classifier, while background subtraction needs a training sequence that contains no objects to build a background model. To automate the analysis, object detection without a separate training phase becomes a critical task. People have tried to tackle this task by using motion information. But existing motion-based methods are usually limited when coping with complex scenarios such as nonrigid motion and dynamic background. In this paper, we show that the above challenges can be addressed in a unified framework named DEtecting Contiguous Outliers in the LOw-rank Representation (DECOLOR). This formulation integrates object detection and background learning into a single process of optimization, which can be solved by an alternating algorithm efficiently. We explain the relations between DECOLOR and other sparsity-based methods. Experiments on both simulated data and real sequences demonstrate that DECOLOR outperforms the state-of-the-art approaches and it can work effectively on a wide range of complex scenarios.
机译:在许多视觉应用中,对象检测是自动视频分析的基本步骤。视频中的对象检测通常由对象检测器或背景减法技术执行。通常,对象检测器需要手动标记的示例来训练二进制分类器,而背景减法需要一个不包含任何对象的训练序列来构建背景模型。为了使分析自动化,没有单独训练阶段的目标检测成为一项关键任务。人们试图通过使用运动信息来解决这一任务。但是,在应对复杂场景(例如非刚性运动和动态背景)时,现有的基于运动的方法通常受到限制。在本文中,我们表明可以在名为“低秩表示法(DECOLOR)”中检测连续异常值的统一框架中解决上述挑战。此公式将对象检测和背景学习集成到单个优化过程中,可以通过交替算法有效解决。我们解释了DECOLOR与其他基于稀疏性的方法之间的关系。在模拟数据和实际序列上进行的实验表明,DECOLOR的性能优于最新方法,并且可以在各种复杂场景下有效工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号