首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion
【24h】

Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion

机译:人体运动的时间聚类的分层对齐聚类分析

获取原文
获取原文并翻译 | 示例

摘要

Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k--means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.
机译:将人类运动按时间划分为合理的运动原语对于理解和建立人类运动的计算模型至关重要。发现运动原语的挑战有几个问题:所有可能的运动组合的指数性质,人类动作的时间尺度的可变性以及表示关节运动的复杂性。我们将学习运动原语的问题视为时间聚类之一,并推导了一种无监督的分层自底向上框架,称为分层对齐聚类分析(HACA)。 HACA将给定的多维时间序列划分为m个不相交的段,以便每个段都属于k个群集之一。 HACA将内核k均值与广义动态时间对齐内核结合起来以对时间序列数据进行聚类。此外,它为查找时间序列的低维嵌入提供了自然的框架。 HACA通过协调下降策略和动态编程得到了有效的优化。运动捕捉和视频数据的实验结果证明了HACA对于分割复杂运动和作为可视化工具的有效性。我们还将HACA的性能与用于蜜蜂舞蹈数据的时间聚类的最新算法进行比较。 HACA代码可在线获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号