首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Tensor Completion for Estimating Missing Values in Visual Data
【24h】

Tensor Completion for Estimating Missing Values in Visual Data

机译:张量补全估计可视数据中的缺失值

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an algorithm to estimate missing values in tensors of visual data. The values can be missing due to problems in the acquisition process or because the user manually identified unwanted outliers. Our algorithm works even with a small amount of samples and it can propagate structure to fill larger missing regions. Our methodology is built on recent studies about matrix completion using the matrix trace norm. The contribution of our paper is to extend the matrix case to the tensor case by proposing the first definition of the trace norm for tensors and then by building a working algorithm. First, we propose a definition for the tensor trace norm that generalizes the established definition of the matrix trace norm. Second, similarly to matrix completion, the tensor completion is formulated as a convex optimization problem. Unfortunately, the straightforward problem extension is significantly harder to solve than the matrix case because of the dependency among multiple constraints. To tackle this problem, we developed three algorithms: simple low rank tensor completion (SiLRTC), fast low rank tensor completion (FaLRTC), and high accuracy low rank tensor completion (HaLRTC). The SiLRTC algorithm is simple to implement and employs a relaxation technique to separate the dependant relationships and uses the block coordinate descent (BCD) method to achieve a globally optimal solution; the FaLRTC algorithm utilizes a smoothing scheme to transform the original nonsmooth problem into a smooth one and can be used to solve a general tensor trace norm minimization problem; the HaLRTC algorithm applies the alternating direction method of multipliers (ADMMs) to our problem. Our experiments show potential applications of our algorithms and the quantitative evaluation indicates that our methods are more accurate and robust than heuristic approaches. The efficiency comparison indicates that FaLTRC and HaLRTC are more efficient than SiLRTC and between FaLRTC an- HaLRTC the former is more efficient to obtain a low accuracy solution and the latter is preferred if a high-accuracy solution is desired.
机译:在本文中,我们提出了一种估计视觉数据张量中缺失值的算法。由于采集过程中的问题或由于用户手动识别了不需要的离群值,因此可能会丢失这些值。我们的算法即使使用少量样本也可以工作,并且可以传播结构以填充较大的缺失区域。我们的方法是建立在最近关于使用矩阵迹线规范完成矩阵的研究之上的。我们的论文的贡献是通过提出张量迹范数的第一个定义,然后通过建立一个工作算法,将矩阵情况扩展到张量情况。首先,我们为张量跟踪范数提出一个定义,该定义概括了矩阵跟踪范数的已建立定义。其次,类似于矩阵完成,将张量完成公式化为凸优化问题。不幸的是,由于多个约束之间的依赖关系,直接问题扩展比矩阵情况要难得多。为了解决这个问题,我们开发了三种算法:简单的低秩张量完成(SiLRTC),快速低秩张量完成(FaLRTC)和高精度低秩张量完成(HaLRTC)。 SiLRTC算法易于实现,并采用松弛技术来分离依赖关系,并使用块坐标下降(BCD)方法来获得全局最优解。 FaLRTC算法利用平滑方案将原始的非平滑问题转化为平滑问题,可用于解决一般的张量迹线范数最小化问题。 HaLRTC算法将乘法器的交替方向方法(ADMM)应用到我们的问题。我们的实验表明了我们算法的潜在应用,定量评估表明我们的方法比启发式方法更准确,更可靠。效率比较表明,FaLTRC和HaLRTC比SiLRTC更有效,并且在FaLRTC和HaLRTC之间,前者在获得低精度解决方案方面效率更高,如果需要高精度解决方案,则后者是首选。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号