首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Extremely Low Bit-Rate Nearest Neighbor Search Using a Set Compression Tree
【24h】

Extremely Low Bit-Rate Nearest Neighbor Search Using a Set Compression Tree

机译:使用集合压缩树的极低比特率最近邻居搜索

获取原文
获取原文并翻译 | 示例

摘要

The goal of this work is a data structure to support approximate nearest neighbor search on very large scale sets of vector descriptors. The criteria we wish to optimize are: (i) that the memory footprint of the representation should be very small (so that it fits into main memory); and (ii) that the approximation of the original vectors should be accurate. We introduce a novel encoding method, named a Set Compression Tree (SCT), that satisfies these criteria. It is able to accurately compress 1 million descriptors using only a few bits per descriptor. The large compression rate is achieved by not compressing on a per-descriptor basis, but instead by compressing the set of descriptors jointly. We describe the encoding, decoding and use for nearest neighbor search, all of which are quite straightforward to implement. The method, tested on standard benchmarks (SIFT1M and 80 Million Tiny Images), achieves superior performance to a number of state-of-the-art approaches, including Product Quantization, Locality Sensitive Hashing, Spectral Hashing, and Iterative Quantization. For example, SCT has a lower error using 5 bits than any of the other approaches, even when they use 16 or more bits per descriptor. We also include a comparison of all the above methods on the standard benchmarks.
机译:这项工作的目标是一种数据结构,以支持在非常大规模的矢量描述符集上进行近似最近的邻居搜索。我们希望优化的标准是:(i)表示的内存占用量应该非常小(以便适合主内存); (ii)原始向量的近似值应准确。我们介绍了一种满足这些条件的新颖编码方法,称为设置压缩树(SCT)。它能够仅使用每个描述符几个位来精确压缩一百万个描述符。通过不按每个描述符进行压缩,而是联合压缩一组描述符来实现较大的压缩率。我们描述了最近邻居搜索的编码,解码和使用,所有这些都非常容易实现。该方法在标准基准(SIFT1M和8000万个微型图像)上进行了测试,其性能优于许多最新方法,包括产品量化,局部敏感哈希,光谱哈希和迭代量化。例如,即使在每个描述符使用16位或更多位的情况下,使用5位SCT的错误也比其他任何方法低。我们还对标准基准上的所有上述方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号