首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Classemes and Other Classifier-Based Features for Efficient Object Categorization
【24h】

Classemes and Other Classifier-Based Features for Efficient Object Categorization

机译:类和其他基于分类器的功能可实现有效的对象分类

获取原文
获取原文并翻译 | 示例

摘要

This paper describes compact image descriptors enabling accurate object categorization with linear classification models, which offer the advantage of being efficient to both train and test. The shared property of our descriptors is the use of classifiers to produce the features of each image. Intuitively, these classifiers evaluate the presence of a set of basis classes inside the image. We first propose to train the basis classifiers as recognizers of a hand-selected set of object classes. We then demonstrate that better accuracy can be achieved by learning the basis classes as “abstract categories” collectively optimized as features for linear classification. Finally, we describe several strategies to aggregate the outputs of basis classifiers evaluated on multiple subwindows of the image in order to handle cases when the photo contains multiple objects and large amounts of clutter. We test our descriptors on challenging benchmarks of object categorization and detection, using a simple linear SVM as classifier. Our results are on par with those achieved by the best systems in these fields but are produced at orders of magnitude lower computational costs and using an image representation that is general and not specifically tuned for a predefined set of test classes.
机译:本文介绍了紧凑的图像描述符,可通过线性分类模型实现精确的对象分类,从而具有训练和测试均有效的优势。描述符的共享属性是使用分类器来生成每个图像的特征。直观地,这些分类器评估图像内一组基础类的存在。我们首先建议将基本分类器训练为一组手动选择的对象类的识别器。然后,我们证明,通过学习作为线性分类特征共同优化的“抽象类别”基类,可以获得更好的准确性。最后,我们描述了几种策略,用于汇总在图像的多个子窗口上评估的基础分类器的输出,以便处理照片包含多个对象和大量杂波的情况。我们使用简单的线性SVM作为分类器,在具有挑战性的对象分类和检测基准上测试描述符。我们的结果与这些领域中最好的系统所获得的结果相当,但其产生的计算成本却降低了几个数量级,并且使用的是通用图像,并且未针对预定的测试类别进行专门调整。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号