首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Spatially-Constrained Similarity Measurefor Large-Scale Object Retrieval
【24h】

Spatially-Constrained Similarity Measurefor Large-Scale Object Retrieval

机译:大规模对象检索的空间受限相似性度量

获取原文
获取原文并翻译 | 示例

摘要

One fundamental problem in object retrieval with the bag-of-words model is its lack of spatial information. Although various approaches are proposed to incorporate spatial constraints into the model, most of them are either too strict or too loose so that they are only effective in limited cases. In this paper, a new spatially-constrained similarity measure (SCSM) is proposed to handle object rotation, scaling, view point change and appearance deformation. The similarity measure can be efficiently calculated by a voting-based method using inverted files. During the retrieval process, object localization in the database images can also be simultaneously achieved using SCSM without post-processing. Furthermore, based on the retrieval and localization results of SCSM, we introduce a novel and robust re-ranking method with the $k$-nearest neighbors of the query for automatically refining the initial search results. Extensive performance evaluations on six public data sets show that SCSM significantly outperforms other spatial models including RANSAC-based spatial verification, while $k$-NN re-ranking outperforms most state-of-the-art approaches using query expansion. We also adapted SCSM for mobile product image search with an iterative algorithm to simultaneously extract the product instance from the mobile query image, identify the instance, and retrieve visually similar product images. Experiments on two product image search data sets show that our approach can robustly localize and extract the product in the query image, and hence drastically improve the retrieval accuracy over baseline methods.
机译:用词袋模型进行对象检索的一个基本问题是缺乏空间信息。尽管提出了各种方法来将空间约束合并到模型中,但是大多数方法过于严格或过于宽松,因此仅在有限的情况下有效。在本文中,提出了一种新的空间约束相似性度量(SCSM)来处理对象旋转,缩放,视点变化和外观变形。可以使用倒排的文件通过基于投票的方法来有效地计算相似性度量。在检索过程中,还可以使用SCSM同时实现数据库图​​像中的对象本地化,而无需进行后处理。此外,基于SCSM的检索和本地化结果,我们引入了一种新颖且健壮的重新排序方法,该方法使用查询的$ k $-最近邻居来自动优化初始搜索结果。对六个公共数据集的广泛性能评估表明,SCSM的性能明显优于其他空间模型,包括基于RANSAC的空间验证,而$ k $ -NN重新排序的性能优于大多数使用查询扩展的最新方法。我们还使用迭代算法使SCSM适应了移动产品图像搜索,以同时从移动查询图像中提取产品实例,识别实例并检索外观相似的产品图像。对两个产品图像搜索数据集进行的实验表明,我们的方法可以在查询图像中稳健地定位和提取产品,因此与基线方法相比,可以大大提高检索精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号