首页> 美国卫生研究院文献>Computational Intelligence and Neuroscience >Large-Scale Coarse-to-Fine Object Retrieval Ontology and Deep Local Multitask Learning
【2h】

Large-Scale Coarse-to-Fine Object Retrieval Ontology and Deep Local Multitask Learning

机译:大规模粗细对象检索本体和深度本地多任务学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Object retrieval plays an increasingly important role in video surveillance, digital marketing, e-commerce, etc. It is facing challenges such as large-scale datasets, imbalanced data, viewpoint, cluster background, and fine-grained details (attributes). This paper has proposed a model to integrate object ontology, a local multitask deep neural network (local MDNN), and an imbalanced data solver to take advantages and overcome the shortcomings of deep learning network models to improve the performance of the large-scale object retrieval system from the coarse-grained level (categories) to the fine-grained level (attributes). Our proposed coarse-to-fine object retrieval (CFOR) system can be robust and resistant to the challenges listed above. To the best of our knowledge, the new main point of our CFOR system is the power of mutual support of object ontology, a local MDNN, and an imbalanced data solver in a unified system. Object ontology supports the exploitation of the inner-group correlations to improve the system performance in category classification, attribute classification, and conducting training flow and retrieval flow to save computational costs in the training stage and retrieval stage on large-scale datasets, respectively. A local MDNN supports linking object ontology to the raw data, and an imbalanced data solver based on Matthews' correlation coefficient (MCC) addresses that the imbalance of data has contributed effectively to increasing the quality of object ontology realization without adjusting network architecture and data augmentation. In order to evaluate the performance of the CFOR system, we experimented on the DeepFashion dataset. This paper has shown that our local MDNN framework based on the pretrained NASNet architecture has achieved better performance (14.2% higher in recall rate) compared to single-task learning (STL) in the attribute learning task; it has also shown that our model with an imbalanced data solver has achieved better performance (5.14% higher in recall rate for fewer data attributes) compared to models that do not take this into account. Moreover, MAP@30 hovers 0.815 in retrieval on an average of 35 imbalanced fashion attributes.
机译:对象检索在视频监视,数字营销,电子商务等方面起着越来越重要的作用。它正面临着诸如大型数据集,数据不平衡,视点,聚类背景和细粒度(属性)之类的挑战。本文提出了一种集成对象本体的模型,一个局部多任务深度神经网络(local MDNN)和一个不平衡数据求解器,以利用并克服深度学习网络模型的缺点以提高大规模对象检索的性能系统从粗粒度级别(类别)到细粒度级别(属性)。我们提出的从粗到细的对象检索(CFOR)系统可能是强大的,并且可以抵抗上述挑战。据我们所知,CFOR系统的新重点是在统一系统中相互支持对象本体,本地MDNN和不平衡数据求解器的能力。对象本体支持内部群相关性的利用,以提高系统在类别分类,属性分类,进行训练流程和检索流程方面的性能,从而分别节省训练阶段和大规模数据集检索阶段的计算成本。本地MDNN支持将对象本体链接到原始数据,并且基于马修斯相关系数(MCC)的不平衡数据求解器解决了数据不平衡有效地提高了对象本体实现质量的情况,而无需调整网络体系结构和数据扩充。为了评估CFOR系统的性能,我们在DeepFashion数据集上进行了实验。本文表明,与基于属性学习任务的单任务学习(STL)相比,基于预训练的NASNet架构的本地MDNN框架具有更好的性能(召回率提高了14.2%);它也表明,与不考虑此问题的模型相比,具有不平衡数据求解器的模型具有更好的性能(对于较少的数据属性,召回率提高了5.14%)。此外,MAP @ 30在平均35个不平衡时尚属性的检索中徘徊在0.815。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号