首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Fast Exact Search in Hamming Space With Multi-Index Hashing
【24h】

Fast Exact Search in Hamming Space With Multi-Index Hashing

机译:利用多索引散列在汉明空间中进行快速精确搜索

获取原文
获取原文并翻译 | 示例

摘要

There is growing interest in representing image data and feature descriptors using compact binary codes for fast near neighbor search. Although binary codes are motivated by their use as direct indices (addresses) into a hash table, codes longer than 32 bits are not being used as such, as it was thought to be ineffective. We introduce a rigorous way to build multiple hash tables on binary code substrings that enables exact k-nearest neighbor search in Hamming space. The approach is storage efficient and straight-forward to implement. Theoretical analysis shows that the algorithm exhibits sub-linear run-time behavior for uniformly distributed codes. Empirical results show dramatic speedups over a linear scan baseline for datasets of up to one billion codes of 64, 128, or 256 bits.
机译:人们越来越关注使用紧凑的二进制代码表示图像数据和特征描述符以进行快速的近邻搜索。尽管二进制代码是通过将其用作哈希表中的直接索引(地址)来激发的,但长于32位的代码并未照此使用,因为这被认为是无效的。我们引入了一种严格的方法来在二进制代码子字符串上构建多个哈希表,从而在汉明空间中实现精确的k最近邻搜索。该方法存储效率高且易于实现。理论分析表明,对于均匀分布的代码,该算法表现出亚线性运行时行为。经验结果表明,对于多达十亿个64位,128位或256位代码的数据集,在线性扫描基线上的速度得到了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号