首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Robust Recovery of Corrupted Low-RankMatrix by Implicit Regularizers
【24h】

Robust Recovery of Corrupted Low-RankMatrix by Implicit Regularizers

机译:隐式正则器稳健地恢复损坏的低秩矩阵

获取原文
获取原文并翻译 | 示例

摘要

Low-rank matrix recovery algorithms aim to recover a corrupted low-rank matrix with sparse errors. However, corrupted errors may not be sparse in real-world problems and the relationship between $ell_1$ regularizer on noise and robust M-estimators is still unknown. This paper proposes a general robust framework for low-rank matrix recovery via implicit regularizers of robust M-estimators, which are derived from convex conjugacy and can be used to model arbitrarily corrupted errors. Based on the additive form of half-quadratic optimization, proximity operators of implicit regularizers are developed such that both low-rank structure and corrupted errors can be alternately recovered. In particular, the dual relationship between the absolute function in $ell_1$ regularizer and Huber M-estimator is studied, which establishes a connection between robust low-rank matrix recovery methods and M-estimators based robust principal component analysis methods. Extensive experiments on synthetic and real-world data sets corroborate our claims and verify the robustness of the proposed framework.
机译:低秩矩阵恢复算法旨在恢复具有稀疏错误的损坏的低秩矩阵。但是,在实际问题中损坏的错误可能并不稀疏,并且噪声的$ ell_1 $正则化函数与健壮的M估计量之间的关系仍然未知。本文提出了一种通过鲁棒M估计的隐式正则化器从低阶矩阵恢复的低阶矩阵恢复的通用鲁棒框架,该鲁棒M估计器是从凸共轭派生的,可用于对任意破坏的错误进行建模。基于半二次优化的加法形式,开发了隐式正则化器的近似运算符,以便可以交替恢复低秩结构和损坏的错误。特别地,研究了$ ell_1 $正则化器中的绝对函数与Huber M估计器之间的对偶关系,从而建立了鲁棒的低秩矩阵恢复方法与基于鲁棒主成分分析方法的M估计器之间的联系。在综合和真实数据集上进行的大量实验证实了我们的主张,并验证了所提出框架的稳健性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号