首页> 外文期刊>Computational Imaging, IEEE Transactions on >Efficient and Robust Recovery of Sparse Signal and Image Using Generalized Nonconvex Regularization
【24h】

Efficient and Robust Recovery of Sparse Signal and Image Using Generalized Nonconvex Regularization

机译:使用广义非凸正则化高效,鲁棒地恢复稀疏信号和图像

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the robust reconstruction problem of a sparse signal from compressed measurements. We propose a robust formulation for sparse reconstruction that employs the 11-norm as the loss function for the residual error and utilizes a generalized nonconvex penalty for sparsity inducing. The 11-loss is less sensitive to outliers in the measurements than the popular 12-loss, while the nonconvex penalty has the capability of ameliorating the bias problem of the popular convex LASSO penalty and thus can yield more accurate recovery. To solve this nonconvex and nonsmooth minimization formulation efficiently, we propose a first-order algorithm based on alternating direction method of multipliers. A smoothing strategy on the 11-loss function has been used in deriving the new algorithm to make it convergent. Further, a sufficient condition for the convergence of the new algorithm has been provided for generalized nonconvex regularization. In comparison with several state-of-the-art algorithms, the new algorithm showed better performance in numerical experiments in recovering sparse signals and compressible images. The new algorithm scales well for large-scale problems, as often encountered in image processing.
机译:本文讨论了来自压缩测量的稀疏信号的鲁棒重建问题。我们提出了一种健壮的稀疏重构公式,该公式采用11范数作为残差的损失函数,并利用稀疏诱导的广义非凸罚分。 11损失对测量中的异常值的敏感度不如流行的12损失,而非凸罚分具有缓解流行的凸LASSO罚分的偏差问题的能力,因此可以实现更准确的恢复。为了有效地解决这种非凸和非光滑的极小化公式,我们提出了一种基于乘子交替方向方法的一阶算法。 11损失函数的平滑策略已用于推导新算法以使其收敛。此外,为广义非凸正则化提供了新算法收敛的充分条件。与几种最新算法相比,该新算法在数值实验中表现出更好的性能,可恢复稀疏信号和可压缩图像。新算法很好地解决了图像处理中经常遇到的大规模问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号