首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Detecting Humans in Dense Crowds Using Locally-Consistent Scale Prior and Global Occlusion Reasoning
【24h】

Detecting Humans in Dense Crowds Using Locally-Consistent Scale Prior and Global Occlusion Reasoning

机译:使用局部一致量表的先验和全局遮挡推理检测密集人群中的人类

获取原文
获取原文并翻译 | 示例

摘要

Human detection in dense crowds is an important problem, as it is a prerequisite to many other visual tasks, such as tracking, counting, action recognition or anomaly detection in behaviors exhibited by individuals in a dense crowd. This problem is challenging due to the large number of individuals, small apparent size, severe occlusions and perspective distortion. However, crowded scenes also offer contextual constraints that can be used to tackle these challenges. In this paper, we explore context for human detection in dense crowds in the form of a locally-consistent scale prior which captures the similarity in scale in local neighborhoods and its smooth variation over the image. Using the scale and confidence of detections obtained from an underlying human detector, we infer scale and confidence priors using Markov Random Field. In an iterative mechanism, the confidences of detection hypotheses are modified to reflect consistency with the inferred priors, and the priors are updated based on the new detections. The final set of detections obtained are then reasoned for occlusion using Binary Integer Programming where overlaps and relations between parts of individuals are encoded as linear constraints. Both human detection and occlusion reasoning in proposed approach are solved with local neighbor-dependent constraints, thereby respecting the inter-dependence between individuals characteristic to dense crowd analysis. In addition, we propose a mechanism to detect different combinations of body parts without requiring annotations for individual combinations. We performed experiments on a new and extremely challenging dataset of dense crowd images showing marked improvement over the underlying human detector.
机译:在密集人群中进行人类检测是一个重要的问题,因为它是许多其他视觉任务的前提,例如跟踪,计数,动作识别或在密集人群中个体表现出的行为异常检测。由于个人数量众多,表观尺寸较小,严重的遮挡和透视变形,因此该问题具有挑战性。但是,拥挤的场景也提供了上下文约束,可以用来解决这些挑战。在本文中,我们以局部一致的尺度形式探索在稠密人群中进行人类检测的环境,该尺度可以捕获局部邻域尺度的相似性及其在图像上的平滑变化。使用从底层人类检测器获得的检测的规模和置信度,我们使用马尔可夫随机场推断规模和置信度先验。在迭代机制中,修改检测假设的置信度以反映与推断的先验的一致性,并基于新的检测更新先验。然后,使用二进制整数编程将获得的最终检测结果推理为遮挡,其中将个体的各个部分之间的重叠和关系编码为线性约束。所提出的方法中的人类检测和遮挡推理都可以通过局部邻域相​​关约束来解决,从而尊重密集人群分析中个体特征之间的相互依赖性。此外,我们提出了一种机制,可以检测身体部位的不同组合,而无需为单个组合添加注释。我们在密集人群图像的新的极具挑战性的数据集上进行了实验,显示出其对潜在人类检测器的显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号