首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >A Unified Framework for Event Summarization and Rare Event Detection from Multiple Views
【24h】

A Unified Framework for Event Summarization and Rare Event Detection from Multiple Views

机译:用于从多个视图进行事件汇总和稀有事件检测的统一框架

获取原文
获取原文并翻译 | 示例

摘要

A novel approach for event summarization and rare event detection is proposed. Unlike conventional methods that deal with event summarization and rare event detection independently, our method solves them in a single framework by transforming them into a graph editing problem. In our approach, a video is represented by a graph, each node of which indicates an event obtained by segmenting the video spatially and temporally. The edges between nodes describe the relationship between events. Based on the degree of relations, edges have different weights. After learning the graph structure, our method finds subgraphs that represent event summarization and rare events in the video by editing the graph, that is, merging its subgraphs or pruning its edges. The graph is edited to minimize a predefined energy model with the Markov Chain Monte Carlo (MCMC) method. The energy model consists of several parameters that represent the causality, frequency, and significance of events. We design a specific energy model that uses these parameters to satisfy each objective of event summarization and rare event detection. The proposed method is extended to obtain event summarization and rare event detection results across multiple videos captured from multiple views. For this purpose, the proposed method independently learns and edits each graph of individual videos for event summarization or rare event detection. Then, the method matches the extracted multiple graphs to each other, and constructs a single composite graph that represents event summarization or rare events from multiple views. Experimental results show that the proposed approach accurately summarizes multiple videos in a . Moreover, the experiments demonstrate that the approach is advantageous in detecting .
机译:提出了一种新的事件汇总和稀有事件检测方法。与传统方法分别处理事件摘要和稀有事件检测不同,我们的方法通过将它们转换为图形编辑问题来在单个框架中解决它们。在我们的方法中,视频由图形表示,图形的每个节点表示通过对视频进行时空分割而获得的事件。节点之间的边缘描述了事件之间的关系。根据关系的程度,边缘具有不同的权重。学习完图结构之后,我们的方法通过编辑图来找到代表视频中事件摘要和稀有事件的子图,即合并其子图或修剪其边缘。使用马尔可夫链蒙特卡洛(MCMC)方法编辑图形以最小化预定义的能量模型。能量模型由几个参数组成,这些参数代表事件的因果关系,频率和重要性。我们设计了一个特定的能量模型,该模型使用这些参数来满足事件摘要和稀有事件检测的每个目标。所提出的方法被扩展以获得在从多个视图捕获的多个视频之间的事件摘要和罕见事件检测结果。为此目的,所提出的方法独立地学习和编辑各个视频的每个图以进行事件汇总或罕见事件检测。然后,该方法将提取的多个图相互匹配,并构造一个表示来自多个视图的事件摘要或稀有事件的合成图。实验结果表明,所提出的方法可以准确地总结一个视频中的多个视频。而且,实验证明该方法在检测中是有利的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号