首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Pose Estimation and Segmentation of Multiple People in Stereoscopic Movies
【24h】

Pose Estimation and Segmentation of Multiple People in Stereoscopic Movies

机译:立体电影中多人的姿势估计和分割

获取原文
获取原文并翻译 | 示例

摘要

We describe a method to obtain a pixel-wise segmentation and pose estimation of multiple people in stereoscopic videos. This task involves challenges such as dealing with unconstrained stereoscopic video, non-stationary cameras, and complex indoor and outdoor dynamic scenes with multiple people. We cast the problem as a discrete labelling task involving multiple person labels, devise a suitable cost function, and optimize it efficiently. The contributions of our work are two-fold: First, we develop a segmentation model incorporating person detections and learnt articulated pose segmentation masks, as well as colour, motion, and stereo disparity cues. The model also explicitly represents depth ordering and occlusion. Second, we introduce a stereoscopic dataset with frames extracted from feature-length movies “StreetDance 3D” and “Pina”. The dataset contains 587 annotated human poses, 1,158 bounding box annotations and 686 pixel-wise segmentations of people. The dataset is composed of indoor and outdoor scenes depicting multiple people with frequent occlusions. We demonstrate results on our new challenging dataset, as well as on the H2view dataset from (Sheasby et al. ACCV 2012).
机译:我们描述了一种获得立体视频中多个人的像素分割和姿势估计的方法。这项任务涉及许多挑战,例如处理不受约束的立体视频,非固定式摄像机以及多人参与的复杂室内和室外动态场景。我们将该问题视为涉及多个人标签的离散标签任务,设计合适的成本函数并对其进行有效优化。我们的工作有两方面的贡献:首先,我们开发了一个分割模型,该模型结合了人员检测和学到的关节姿势分割蒙版以及颜色,运动和立体视差提示。该模型还明确表示深度顺序和遮挡。其次,我们引入了一个立体数据集,其中包含从长篇电影“ StreetDance 3D”和“ Pina”中提取的帧。该数据集包含587个带注释的人体姿势,1,158个边界框注释和686个按像素细分的人。数据集由室内和室外场景组成,这些场景描绘了频繁遮挡的多个人。我们在新的具有挑战性的数据集以及(Sheasby等人,ACCV 2012)的H2view数据集上展示了结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号