首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Context-Sensitive Dynamic Ordinal Regression for Intensity Estimation of Facial Action Units
【24h】

Context-Sensitive Dynamic Ordinal Regression for Intensity Estimation of Facial Action Units

机译:面部敏感单位强度估计的上下文敏感动态有序回归

获取原文
获取原文并翻译 | 示例

摘要

Modeling intensity of facial action units from spontaneously displayed facial expressions is challenging mainly because of high variability in subject-specific facial expressiveness, head-movements, illumination changes, etc. These factors make the target problem highly context-sensitive. However, existing methods usually ignore this context-sensitivity of the target problem. We propose a novel Conditional Ordinal Random Field (CORF) model for context-sensitive modeling of the facial action unit intensity, where the W5+ (, , , , and ) definition of the context is used. While the proposed model is general enough to handle all six context questions, in this paper we focus on the context questions: (the observed subject), (the changes in facial expressions), and (the timing of facial expressions and their intensity). The context questions and are modeled by means of the newly introduced context-dependent covariate effects, and the context question is modeled in terms of temporal correlation between the ordinal outputs, i.e., intensity levels of action units. We also introduce a weighted softmax-margin learning of CRFs from data with skewed distribution of the intensity levels, which is commonly encountered in spontaneous facial data. The proposed model is evaluated on intensity estimation of pain and facial action units using two recently published datasets (UNBC Shoulder Pain and DISFA) of spontaneously displayed facial expressions. Our experiments show that the proposed model performs significantly better on the target tasks compared to the state-of-the-art approaches. Furthermore, compared to traditional learning of CRFs, we show that the proposed weighted learning results in more robust parameter estimation from th- imbalanced intensity data.
机译:根据自发显示的面部表情来模拟面部动作单位的强度具有挑战性,这主要是因为特定于对象的面部表情,头部运动,照度变化等的高度可变性。这些因素使目标问题与上下文高度相关。但是,现有方法通常会忽略目标问题的上下文相关性。我们提出了一种新颖的条件有序随机场(CORF)模型,用于面部动作单元强度的上下文敏感建模,其中使用了上下文的W5 +(、、、、和)定义。尽管所提出的模型足以应付所有六个情境问题,但在本文中,我们重点关注情境问题:(观察到的对象),(面部表情的变化)和(面部表情的时机及其强度)。通过新引入的依赖于上下文的协变量效应对上下文问题和进行建模,并根据顺序输出之间的时间相关性(即动作单元的强度水平)对上下文问题进行建模。我们还从强度水平的偏斜分布的数据中引入了CRF的加权softmax-margin学习,这在自发的面部数据中经常遇到。使用最近发布的两个自发显示的面部表情数据集(UNBC肩痛和DISFA),对疼痛和面部动作单位的强度估计进行了评估。我们的实验表明,与最新方法相比,所提出的模型在目标任务上的性能明显更好。此外,与传统的CRF学习相比,我们表明,所提出的加权学习可以从不平衡强度数据中获得更可靠的参数估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号