首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >High-Speed Tracking with Kernelized Correlation Filters
【24h】

High-Speed Tracking with Kernelized Correlation Filters

机译:核相关滤波器的高速跟踪

获取原文
获取原文并翻译 | 示例

摘要

The core component of most modern trackers is a discriminative classifier, tasked with distinguishing between the target and the surrounding environment. To cope with natural image changes, this classifier is typically trained with translated and scaled sample patches. Such sets of samples are riddled with redundancies—any overlapping pixels are constrained to be the same. Based on this simple observation, we propose an analytic model for datasets of thousands of translated patches. By showing that the resulting data matrix is circulant, we can diagonalize it with the discrete Fourier transform, reducing both storage and computation by several orders of magnitude. Interestingly, for linear regression our formulation is equivalent to a correlation filter, used by some of the fastest competitive trackers. For kernel regression, however, we derive a new kernelized correlation filter (KCF), that unlike other kernel algorithms has the exact same complexity as its linear counterpart. Building on it, we also propose a fast multi-channel extension of linear correlation filters, via a linear kernel, which we call dual correlation filter (DCF). Both KCF and DCF outperform top-ranking trackers such as Struck or TLD on a 50 videos benchmark, despite running at hundreds of frames-per-second, and being implemented in a few lines of code (Algorithm 1). To encourage further developments, our tracking framework was made open-source.
机译:大多数现代跟踪器的核心组件是区分性分类器,其任务是区分目标和周围环境。为了应对自然的图像变化,通常使用翻译和缩放后的样本补丁来训练该分类器。这样的样本集充满了冗余-任何重叠的像素都必须相同。基于这个简单的观察,我们为成千上万个翻译补丁的数据集提出了一个分析模型。通过显示结果数据矩阵是循环的,我们可以使用离散傅立叶变换对角化它,将存储和计算量减少几个数量级。有趣的是,对于线性回归,我们的公式等效于一些最快的竞争跟踪器使用的相关过滤器。但是,对于内核回归,我们得出了一个新的内核化相关性过滤器(KCF),它与其他内核算法不同,其复杂度与其线性对应项完全相同。在此基础上,我们还通过线性内核提出了线性相关滤波器的快速多通道扩展,我们称之为双相关滤波器(DCF)。尽管KCF和DCF在每秒50帧的速度下运行,并且以几行代码实现(算法1),但它们在50个视频基准上的性能均优于Struck或TLD等顶级跟踪器。为鼓励进一步的发展,我们将跟踪框架设为开源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号