首页> 外文期刊>Neurocomputing >A hybrid tracking framework based on kernel correlation filtering and particle filtering
【24h】

A hybrid tracking framework based on kernel correlation filtering and particle filtering

机译:基于核相关滤波和粒子滤波的混合跟踪框架

获取原文
获取原文并翻译 | 示例

摘要

Recently, the visual object tracking based on correlation filtering has achieved great success. However, there are still some problems need to be improved, such as the scale variation of the target, and so on. Particle filtering (PF) is another commonly used tracking technology. The drawback of PF is that a large number of particles is needed. In this paper, we propose a hybrid tracking framework based on a kernel correlation filtering model and a PF model to complement these two techniques. A local sparse coding is acted as the appearance model of the PF model. First, the kernel correlation filter model is used to obtain the preliminary position of the target. On the basis of the preliminary position of the target, the PF model is used to locate the target further and to capture the scale variation of the target. Finally, both qualitative and quantitative analyses on challenging benchmark with 100 sequences prove the effectiveness of our hybrid tracking framework. (C) 2018 Elsevier B.V. All rights reserved.
机译:近年来,基于相关滤波的视觉目标跟踪取得了很大的成功。但是,仍然存在一些问题需要改进,例如目标的比例变化等等。粒子滤波(PF)是另一种常用的跟踪技术。 PF的缺点是需要大量的颗粒。在本文中,我们提出了一种基于内核相关过滤模型和PF模型的混合跟踪框架,以补充这两种技术。局部稀疏编码充当PF模型的外观模型。首先,使用核相关滤波器模型来获取目标的初始位置。基于目标的初始位置,PF模型用于进一步定位目标并捕获目标的比例变化。最后,对具有100个序列的具有挑战性的基准进行定性和定量分析,证明了我们的混合跟踪框架的有效性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第5期|40-49|共10页
  • 作者单位

    Huazhong Univ Sci & Technol, Sch Informat Sci & Technol, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Informat Sci & Technol, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Informat Sci & Technol, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Informat Sci & Technol, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Informat Sci & Technol, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Informat Sci & Technol, Wuhan 430074, Hubei, Peoples R China;

    Hunan Univ, Business Sch, Changsha 410006, Hunan, Peoples R China;

    Univ Jiujiang, Sch Informat Sci & Technol, Jiujiang 332005, Jiangxi, Peoples R China;

    Univ Jiujiang, Sch Informat Sci & Technol, Jiujiang 332005, Jiangxi, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Kernel; Correlation filtering; Sparse coding; Visual tracking; Particle filtering;

    机译:内核;相关滤波;稀疏编码;视觉跟踪;粒子滤波;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号