首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Joint Color-Spatial-Directional Clustering and Region Merging (JCSD-RM) for Unsupervised RGB-D Image Segmentation
【24h】

Joint Color-Spatial-Directional Clustering and Region Merging (JCSD-RM) for Unsupervised RGB-D Image Segmentation

机译:联合颜色空间方向聚类和区域合并(JCSD-RM)用于无​​监督RGB-D图像分割

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in depth imaging sensors provide easy access to the synchronized depth with color, called RGB-D image. In this paper, we propose an unsupervised method for indoor RGB-D image segmentation and analysis. We consider a statistical image generation model based on the color and geometry of the scene. Our method consists of a joint color-spatial-directional clustering method followed by a statistical planar region merging method. We evaluate our method on the NYU depth database and compare it with existing unsupervised RGB-D segmentation methods. Results show that, it is comparable with the state of the art methods and it needs less computation time. Moreover, it opens interesting perspectives to fuse color and geometry in an unsupervised manner.
机译:深度成像传感器的最新进展可轻松访问具有颜色的同步深度,称为RGB-D图像。在本文中,我们提出了一种用于室内RGB-D图像分割和分析的无监督方法。我们考虑基于场景的颜色和几何形状的统计图像生成模型。我们的方法由联合颜色空间方向聚类方法和统计平面区域合并方法组成。我们在NYU深度数据库上评估我们的方法,并将其与现有的无监督RGB-D分割方法进行比较。结果表明,该方法可与现有方法相媲美,并且所需的计算时间更少。此外,它开辟了有趣的视角,以无人监督的方式融合了颜色和几何形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号