首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Semantic Event Fusion of Different Visual Modality Concepts for Activity Recognition
【24h】

Semantic Event Fusion of Different Visual Modality Concepts for Activity Recognition

机译:用于活动识别的不同视觉形态概念的语义事件融合

获取原文
获取原文并翻译 | 示例

摘要

Combining multimodal concept streams from heterogeneous sensors is a problem superficially explored for activity recognition. Most studies explore simple sensors in nearly perfect conditions, where temporal synchronization is guaranteed. Sophisticated fusion schemes adopt problem-specific graphical representations of events that are generally deeply linked with their training data and focused on a single sensor. This paper proposes a hybrid framework between knowledge-driven and probabilistic-driven methods for event representation and recognition. It separates semantic modeling from raw sensor data by using an intermediate semantic representation, namely concepts. It introduces an algorithm for sensor alignment that uses concept similarity as a surrogate for the inaccurate temporal information of real life scenarios. Finally, it proposes the combined use of an ontology language, to overcome the rigidity of previous approaches at model definition, and a probabilistic interpretation for ontological models, which equips the framework with a mechanism to handle noisy and ambiguous concept observations, an ability that most knowledge-driven methods lack. We evaluate our contributions in multimodal recordings of elderly people carrying out IADLs. Results demonstrated that the proposed framework outperforms baseline methods both in event recognition performance and in delimiting the temporal boundaries of event instances.
机译:结合来自异构传感器的多模式概念流是为活动识别而表面研究的一个问题。大多数研究在保证时间同步的近乎完美的条件下探索简单的传感器。复杂的融合方案采用特定于事件的事件的图形表示形式,这些事件通常与训练数据密切相关,并专注于单个传感器。本文提出了知识驱动和概率驱动方法之间的混合框架,用于事件表示和识别。它通过使用中间语义表示(即概念)将语义建模与原始传感器数据分离。它介绍了一种用于传感器对齐的算法,该算法使用概念相似性作为现实生活场景中不准确的时间信息的替代。最后,它提出了本体语言的组合使用,以克服模型定义时先前方法的僵化,以及本体模型的概率解释,从而为框架配备了处理嘈杂和模棱两可的概念观察的机制,这种能力缺乏知识驱动的方法。我们评估了对执行IADL的老年人的多模式录音所做的贡献。结果表明,所提出的框架在事件识别性能和划定事件实例的时间边界方面均优于基线方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号