首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning
【24h】

Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning

机译:具有空间汇总特征和结构化整体学习的行人检测

获取原文
获取原文并翻译 | 示例

摘要

Many typical applications of object detection operate within a prescribed false-positive range. In this situation the performance of a detector should be assessed on the basis of the area under the ROC curve over that range, rather than over the full curve, as the performance outside the prescribed range is irrelevant. This measure is labelled as the partial area under the ROC curve (pAUC). We propose a novel ensemble learning method which achieves a maximal detection rate at a user-defined range of false positive rates by directly optimizing the partial AUC using structured learning. In addition, in order to achieve high object detection performance, we propose a new approach to extracting low-level visual features based on spatial pooling. Incorporating spatial pooling improves the translational invariance and thus the robustness of the detection process. Experimental results on both synthetic and real-world data sets demonstrate the effectiveness of our approach, and we show that it is possible to train state-of-the-art pedestrian detectors using the proposed structured ensemble learning method with spatially pooled features. The result is the current best reported performance on the Caltech-USA pedestrian detection dataset.
机译:对象检测的许多典型应用在规定的假阳性范围内操作。在这种情况下,应根据ROC曲线下超过该范围而不是整个曲线下的面积来评估检测器的性能,因为超出规定范围的性能无关紧要。该度量标记为ROC曲线(pAUC)下的部分面积。我们提出了一种新颖的集成学习方法,该方法通过使用结构化学习直接优化部分AUC,从而在用户定义的误报率范围内实现最大检测率。另外,为了实现高目标检测性能,我们提出了一种基于空间池提取低层视觉特征的新方法。合并空间池可改善平移不变性,从而改善检测过程的鲁棒性。在综合和真实数据集上的实验结果证明了我们方法的有效性,并且我们表明可以使用建议的结构化集成学习方法和空间汇总特征来训练最先进的行人检测器。结果是在Caltech-USA行人检测数据集上报告的当前最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号