首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Scale Space Graph Representation and Kernel Matching for Non Rigid and Textured 3D Shape Retrieval
【24h】

Scale Space Graph Representation and Kernel Matching for Non Rigid and Textured 3D Shape Retrieval

机译:非刚性和带纹理的3D形状检索的尺度空间图表示和内核匹配

获取原文
获取原文并翻译 | 示例

摘要

In this paper we introduce a novel framework for 3D object retrieval that relies on tree-based shape representations (TreeSha) derived from the analysis of the scale-space of the Auto Diffusion Function (ADF) and on specialized graph kernels designed for their comparison. By coupling maxima of the Auto Diffusion Function with the related basins of attraction, we can link the information at different scales encoding spatial relationships in a graph description that is isometry invariant and can easily incorporate texture and additional geometrical information as node and edge features. Using custom graph kernels it is then possible to estimate shape dissimilarities adapted to different specific tasks and on different categories of models, making the procedure a powerful and flexible tool for shape recognition and retrieval. Experimental results demonstrate that the method can provide retrieval scores similar or better than state-of-the-art on textured and non textured shape retrieval benchmarks and give interesting insights on effectiveness of different shape descriptors and graph kernels.
机译:在本文中,我们介绍了一种新颖的3D对象检索框架,该框架依赖于基于树的形状表示(TreeSha),该形状表示来自对自动扩散函数(ADF)的比例空间进行分析得出的结果,并基于专门用于比较的图核。通过将自动扩散函数的最大值与相关的吸引盆地相结合,我们可以在等距不变的图形描述中链接编码空间关系的不同比例的信息,并可以轻松地将纹理和其他几何信息合并为节点和边缘特征。然后,使用自定义图形内核,可以估计适合于不同特定任务和不同类别模型的形状差异,从而使该过程成为用于形状识别和检索的强大而灵活的工具。实验结果表明,该方法在纹理和非纹理形状检索基准上可以提供比现有技术更高或更高的检索分数,并且可以对不同形状描述符和图形内核的有效性提供有趣的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号