首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Learning Deep Representation for Face Alignment with Auxiliary Attributes
【24h】

Learning Deep Representation for Face Alignment with Auxiliary Attributes

机译:学习具有辅助属性的人脸对齐的深度表示

获取原文
获取原文并翻译 | 示例

摘要

In this study, we show that landmark detection or face alignment task is not a single and independent problem. Instead, its robustness can be greatly improved with auxiliary information. Specifically, we jointly optimize landmark detection together with the recognition of heterogeneous but subtly correlated facial attributes, such as gender, expression, and appearance attributes. This is non-trivial since different attribute inference tasks have different learning difficulties and convergence rates. To address this problem, we formulate a novel tasks-constrained deep model, which not only learns the inter-task correlation but also employs dynamic task coefficients to facilitate the optimization convergence when learning multiple complex tasks. Extensive evaluations show that the proposed task-constrained learning (i) outperforms existing face alignment methods, especially in dealing with faces with severe occlusion and pose variation, and (ii) reduces model complexity drastically compared to the state-of-the-art methods based on cascaded deep model.
机译:在这项研究中,我们表明,界标检测或人脸对齐任务不是一个独立的问题。相反,可以通过辅助信息极大地提高其鲁棒性。具体而言,我们共同优化了地标检测以及对异类但微妙相关的面部属性(例如性别,表情和外观属性)的识别。这是不平凡的,因为不同的属性推理任务具有不同的学习难度和收敛速度。为了解决这个问题,我们制定了一个新颖的任务约束深度模型,该模型不仅可以学习任务间的相关性,而且可以使用动态任务系数来促进在学习多个复杂任务时的优化收敛。广泛的评估表明,建议的任务受限学习(i)优于现有的人脸对齐方法,特别是在处理具有严重遮挡和姿势变化的人脸时,以及(ii)与最新方法相比,大大降低了模型复杂性基于级联的深度模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号