首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Tracklet Association by Online Target-Specific Metric Learning and Coherent Dynamics Estimation
【24h】

Tracklet Association by Online Target-Specific Metric Learning and Coherent Dynamics Estimation

机译:通过在线目标特定度量学习和相干动力学估计进行轨迹跟踪关联

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a novel method based on online target-specific metric learning and coherent dynamics estimation for tracklet (track fragment) association by network flow optimization in long-term multi-person tracking. Our proposed framework aims to exploit appearance and motion cues to prevent identity switches during tracking and to recover missed detections. Furthermore, target-specific metrics (appearance cue) and motion dynamics (motion cue) are proposed to be learned and estimated online, i.e., during the tracking process. Our approach is effective even when such cues fail to identify or follow the target due to occlusions or object-to-object interactions. We also propose to learn the weights of these two tracking cues to handle the difficult situations, such as severe occlusions and object-to-object interactions effectively. Our method has been validated on several public datasets and the experimental results show that it outperforms several state-of-the-art tracking methods.
机译:在本文中,我们提出了一种基于在线特定目标度量学习和相干动力学估计的新方法,该方法通过长期多人跟踪中的网络流优化来实现小波(轨道片段)关联。我们提出的框架旨在利用外观和运动提示来防止在跟踪过程中切换身份并恢复丢失的检测。此外,提出了要在线(即,在跟踪过程中)学习和估计特定于目标的度量(外观提示)和运动动力学(运动提示)。即使这种线索由于遮挡或对象间交互作用而无法识别或跟随目标,我们的方法仍然有效。我们还建议学习这两个跟踪线索的权重,以处理困难的情况,例如严重的遮挡和有效的对象间交互。我们的方法已经在多个公共数据集上得到了验证,实验结果表明,该方法优于几种最新的跟踪方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号