首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Image Visual Realism: From Human Perception to Machine Computation
【24h】

Image Visual Realism: From Human Perception to Machine Computation

机译:图像视觉现实主义:从人类的感知到机器计算

获取原文
获取原文并翻译 | 示例

摘要

Visual realism is defined as the extent to which an image appears to people as a photo rather than computer generated. Assessing visual realism is important in applications like computer graphics rendering and photo retouching. However, current realism evaluation approaches use either labor-intensive human judgments or automated algorithms largely dependent on comparing renderings to reference images. We develop a reference-free computational framework for visual realism prediction to overcome these constraints. First, we construct a benchmark dataset of 2,520 images with comprehensive human annotated attributes. From statistical modeling on this data, we identify image attributes most relevant for visual realism. We propose both empirically-based (guided by our statistical modeling of human data) and deep convolutional neural network models to predict visual realism of images. Our framework has the following advantages: (1) it creates an interpretable and concise empirical model that characterizes human perception of visual realism; (2) it links computational features to latent factors of human image perception.
机译:视觉真实感被定义为图像在人们看来是照片而不是计算机生成的程度。在诸如计算机图形渲染和照片修饰之类的应用程序中,评估视觉逼真度很重要。但是,当前的现实主义评估方法使用劳动密集型的人工判断或自动算法,这些算法很大程度上取决于将渲染图与参考图像进行比较。我们开发了用于视觉现实主义预测的无参考计算框架,以克服这些限制。首先,我们构建了包含完整的人类注释属性的2,520张图像的基准数据集。通过对该数据进行统计建模,我们可以确定与视觉真实感最相关的图像属性。我们提出了基于经验的模型(以我们的人类数据统计模型为指导)和深度卷积神经网络模型,以预测图像的视觉真实感。我们的框架具有以下优点:(1)它创建了一个可解释且简洁的经验模型,该模型表征了人类对视觉现实主义的感知; (2)将计算功能与人类图像感知的潜在因素联系起来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号