首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Unsupervised Generation of Free-Form and Parameterized Avatars
【24h】

Unsupervised Generation of Free-Form and Parameterized Avatars

机译:自由形式和参数化头像的无监督生成

获取原文
获取原文并翻译 | 示例

摘要

We study two problems involving the task of mapping images between different domains. The first problem, transfers an image in one domain to an analog image in another domain. The second problem, extends the previous one by mapping an input image to a tied pair, consisting of a vector of parameters and an image that is created using a graphical engine from this vector of parameters. Similar to the first problem, the mapping's objective is to have the output image as similar as possible to the input image. In both cases, no supervision is given during training in the form of matching inputs and outputs. We compare the two unsupervised learning problems to the problem of unsupervised domain adaptation, define generalization bounds that are based on discrepancy, and employ a GAN to implement network solutions that correspond to these bounds. Experimentally, our methods are shown to solve the problem of automatically creating avatars.
机译:我们研究了两个涉及在不同域之间映射图像的任务的问题。第一个问题是将一个域中的图像传输到另一个域中的模拟图像。第二个问题是通过将输入图像映射到绑定对来扩展前一个,该绑定对由参数向量和使用图形引擎从该参数向量创建的图像组成。与第一个问题类似,映射的目标是使输出图像尽可能与输入图像相似。在这两种情况下,培训期间都不会以匹配的输入和输出形式进行监督。我们将两个无监督学习问题与无监督域自适应问题进行了比较,定义了基于差异的泛化边界,并采用GAN来实现与这些边界相对应的网络解决方案。从实验上看,我们的方法可以解决自动创建化身的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号