首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Aerodynamic Design Optimization of an Axial Flow Compressor Stator Using Parameterized Free-Form Deformation
【24h】

Aerodynamic Design Optimization of an Axial Flow Compressor Stator Using Parameterized Free-Form Deformation

机译:基于参数化自由形式变形的轴流压气机定子的气动设计优化

获取原文
获取原文并翻译 | 示例
           

摘要

This paper describes an aerodynamic design optimization of a highly loaded compressor stator blade using parameterized free-form deformation (FFD). The optimization methodology presented utilizes a B-spline-based FFD control volume to map the blade from the object space to the parametric space via transformation operations in order to perturb the blade surface. Coupled with a multi-objective genetic algorithm (MOGA) and a Gaussian process-based response surface method (RSM), a fully automated iterative loop was used to run the optimization on a fitted correlation function. A weighted average reduction of 6.1% and 36.9% in total pressure loss and exit whirl angle was achieved, showing a better compromise of objective functions with smoother blade shape than other results obtained in the open literature. Data mining of the Pareto set of optimums revealed four groups of data interactions of which some design variables were found to have skewed scatter relationship with objective functions and can be redefined for further improvement of performance. Analysis of the flow field showed that the thinning of the blade at midspan and reduction in camber distribution were responsible for the elimination of the focal-type separation vortex by redirecting the secondary flow in an axially forward direction toward the midspan and near the hub endwall downstream. Furthermore, the reduction in exit whirl angle especially at the shroud was due to the mild bow shape which generated radial forces on the flow field thereby reducing the flow diffusion rate at the suction surface corner. This effect substantially delayed or eliminated the formation of corner separation at design and off-design operating conditions. Parameterized FFD was found to have superior benefits of smooth surface generation with low number of design variables while maintaining a good compromise between objective functions when coupled with a genetic algorithm.
机译:本文介绍了采用参数化自由形式变形(FFD)的高负荷压缩机定子叶片的空气动力学设计优化。提出的优化方法利用基于B样条的FFD控制体积通过转换操作将叶片从对象空间映射到参数空间,以扰动叶片表面。结合多目标遗传算法(MOGA)和基于高斯过程的响应面方法(RSM),使用全自动迭代循环对拟合的相关函数进行优化。总压力损失和出口涡流角的加权平均降低了6.1%和36.9%,与公开文献中获得的其他结果相比,显示了更好的目标功能折衷和更平滑的叶片形状。帕累托最优集的数据挖掘揭示了四组数据交互,其中一些设计变量与目标函数具有偏斜的分散关系,可以重新定义以进一步改善性能。对流场的分析表明,中跨叶片的变薄和外倾分布的减小是通过将二次流沿轴向向前的方向朝中跨并靠近轮毂端壁的下游方向消除了焦点型分离涡的原因。 。此外,出口回旋角的减小,特别是在罩上,是由于缓和的弓形在流场上产生了径向力,从而减小了吸力面拐角处的流体扩散速率。这种效果大大延迟或消除了设计和非设计运行条件下转角分离的形成。发现参数化FFD具有平滑的表面生成和较少的设计变量的优越性,同时与遗传算法结合可在目标函数之间保持良好的折衷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号