首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Visual Dynamics: Stochastic Future Generation via Layered Cross Convolutional Networks
【24h】

Visual Dynamics: Stochastic Future Generation via Layered Cross Convolutional Networks

机译:视觉动力学:通过分层交叉卷积网络的随机未来生成

获取原文
获取原文并翻译 | 示例

摘要

We study the problem of synthesizing a number of likely future frames from a single input image. In contrast to traditional methods that have tackled this problem in a deterministic or non-parametric way, we propose to model future frames in a probabilistic manner. Our probabilistic model makes it possible for us to sample and synthesize many possible future frames from a single input image. To synthesize realistic movement of objects, we propose a novel network structure, namely a Cross Convolutional Network; this network encodes image and motion information as feature maps and convolutional kernels, respectively. In experiments, our model performs well on synthetic data, such as 2D shapes and animated game sprites, and on real-world video frames. We present analyses of the learned network representations, showing it is implicitly learning a compact encoding of object appearance and motion. We also demonstrate a few of its applications, including visual analogy-making and video extrapolation.
机译:我们研究了从单个输入图像合成许多可能的未来帧的问题。与以确定性或非参数方式解决此问题的传统方法相反,我们建议以概率方式对未来框架进行建模。我们的概率模型使我们有可能从单个输入图像中采样和合成许多可能的未来帧。为了合成物体的真实运动,我们提出了一种新颖的网络结构,即交叉卷积网络;该网络将图像和运动信息分别编码为特征图和卷积核。在实验中,我们的模型在合成数据(例如2D形状和动画游戏图片)以及真实视频帧上的表现良好。我们对学习到的网络表示形式进行分析,表明它隐式地学习了对象外观和运动的紧凑编码。我们还将展示其一些应用,包括视觉类比制作和视频外推。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号