首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A Region-Based Gauss-Newton Approach to Real-Time Monocular Multiple Object Tracking
【24h】

A Region-Based Gauss-Newton Approach to Real-Time Monocular Multiple Object Tracking

机译:基于区域的高斯牛顿实时单眼多目标跟踪方法

获取原文
获取原文并翻译 | 示例

摘要

We propose an algorithm for real-time 6DOF pose tracking of rigid 3D objects using a monocular RGB camera. The key idea is to derive a region-based cost function using temporally consistent local color histograms. While such region-based cost functions are commonly optimized using first-order gradient descent techniques, we systematically derive a Gauss-Newton optimization scheme which gives rise to drastically faster convergence and highly accurate and robust tracking performance. We furthermore propose a novel complex dataset dedicated for the task of monocular object pose tracking and make it publicly available to the community. To our knowledge, it is the first to address the common and important scenario in which both the camera as well as the objects are moving simultaneously in cluttered scenes. In numerous experiments-including our own proposed dataset-we demonstrate that the proposed Gauss-Newton approach outperforms existing approaches, in particular in the presence of cluttered backgrounds, heterogeneous objects and partial occlusions.
机译:我们提出了一种使用单眼RGB相机对刚性3D对象进行实时6DOF姿态跟踪的算法。关键思想是使用时间上一致的局部颜色直方图导出基于区域的成本函数。虽然通常使用一阶梯度下降技术对此类基于区域的成本函数进行优化,但我们系统地推导了高斯-牛顿优化方案,该方案可大大加快收敛速度​​,并具有高度精确且鲁棒的跟踪性能。我们还提出了一个新颖的复杂数据集,专门用于单眼物体姿态跟踪,并将其公开提供给社区。据我们所知,这是第一个解决常见且重要的场景的场景,在这种场景中,相机和物体在混乱的场景中同时移动。在包括我们自己提出的数据集在内的众多实验中,我们证明了提出的高斯-牛顿方法优于现有方法,特别是在背景杂乱,异物和部分遮挡的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号