首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A Benchmark Dataset and Evaluation for Non-Lambertian and Uncalibrated Photometric Stereo
【24h】

A Benchmark Dataset and Evaluation for Non-Lambertian and Uncalibrated Photometric Stereo

机译:非朗伯式和未经校准的测光立体声的基准数据集和评估

获取原文
获取原文并翻译 | 示例

摘要

Classic photometric stereo is often extended to deal with real-world materials and work with unknown lighting conditions for practicability. To quantitatively evaluate non-Lambertian and uncalibrated photometric stereo, a photometric stereo image dataset containing objects of various shapes with complex reflectance properties and high-quality ground truth normals is still missing. In this paper, we introduce the 'DiLiGenT' dataset with calibrated Directional Lightings, objects of General reflectance with different shininess, and 'ground Truth' normals from high-precision laser scanning. We use our dataset to quantitatively evaluate state-of-the-art photometric stereo methods for general materials and unknown lighting conditions, selected from a newly proposed photometric stereo taxonomy emphasizing non-Lambertian and uncalibrated methods. The dataset and evaluation results are made publicly available, and we hope it can serve as a benchmark platform that inspires future research.
机译:通常将经典的光度学立体声扩展为处理现实世界的材料,并在未知的照明条件下工作以提高实用性。为了定量评估非朗伯和未校准的测光立体图像,仍然缺少包含具有复杂反射特性和高质量地面真实法线的各种形状的对象的测光立体图像数据集。在本文中,我们介绍了带有校准的定向照明的“ DiLiGenT”数据集,具有不同光泽度的全反射对象以及来自高精度激光扫描的“地面真相”法线。我们使用我们的数据集来定量评估针对一般材料和未知照明条件的最新光度学立体方法,这些方法是从新提出的强调非朗伯方法和未校准方法的光度学立体分类法中选择的。数据集和评估结果已公开提供,我们希望它可以作为启发未来研究的基准平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号