首页> 外文期刊>Parallel Processing Letters >THE TRANSITIVE CLOSURE AND RELATED ALGORITHMS OF DIGRAPH ON THE RECONFIGURABLE ARCHITECTURE
【24h】

THE TRANSITIVE CLOSURE AND RELATED ALGORITHMS OF DIGRAPH ON THE RECONFIGURABLE ARCHITECTURE

机译:可重构体系结构上的过渡闭合图和相关算法

获取原文
获取原文并翻译 | 示例

摘要

The reconfigurable architecture is a parallel computation model that consists of manynprocessor elements (PEs) and a reconfigurable bus system. There are many variant pro-nposed reconfigurable architectures, for example, reconfigurable mesh (R-Mesh), direc-ntional reconfigurable mesh (DR-Mesh), processor arrays with reconfigurable bus sys-ntems (PARBS), complete directional processor arrays with reconfigurable bus systemsn(CD-PARBS), reconfigurable multiple bus machine (RMBM), directional reconfigurablenmultiple bus machine (directional RMBM), and etc. In this paper, a transitive closuren(TC) algorithm of digraph is proposed on the models without the directional capabilityn(non-directional). Some related digraph problems, such as strongly connected digraph,nstrongly connected component (SCC), cyclic checking, and tree construction, can alsonbe resolved by modifying our transitive closure algorithm. All the proposed algorithmsnare designed on a three-dimensional (3-D) n×n×n non-directional reconfigurable mesh,nn is the number of vertices in a digraph D, and can resolve the respective problems innO(log d(D)) time, d(D) is the diameter of the digraph D. The cyclic checking problemncan be further reduced to O(log c(D)) time, c(D) is the minimum distance of cycles innthe digraph D. There exist two different approaches: the matrix multiplication approachnon the non-directional models for algebraic path problems (APP) and s-t connectivitynapproach on the directional models. In this paper, we will use the tree construction al-ngorithm to prove those two approaches are insufficient to resolve all digraph problemsnand demonstrate why our approach is so important and innovative for digraph problemsnon the reconfigurable models.
机译:可重配置体系结构是一个并行计算模型,由许多处理器元素(PE)和可重配置总线系统组成。提议的可重构架构有很多变体,例如,可重构网格(R-Mesh),方向可重构网格(DR-Mesh),具有可重构总线系统(PARBS)的处理器阵列,具有可重构的完整定向处理器阵列总线系统(CD-PARBS),可重配置多总线机(RMBM),有向可重配置多总线机(有向RMBM)等。本文在无方向能力的模型上提出了有向图的传递闭包(TC)算法。 (非定向)。通过修改传递闭包算法也无法解决一些相关的图问题,例如强连通图,强连通组件(SCC),循环检查和树结构。所有提出的算法都设计在三维(3-D)n×n×n无方向可重构网格上,nn是有向图D中的顶点数,并且可以解决innO(log d(D) )时间,d(D)是有向图D的直径。循环检查问题可以进一步减少为O(log c(D))时间,c(D)是有向图D的最小循环距离。存在两个不同的方法:矩阵乘法方法不是针对代数路径问题的非方向性模型(APP)和方向性模型上的st连接性方法。在本文中,我们将使用树构建算法来证明这两种方法不足以解决所有有向图问题,并说明为什么我们的方法对于无可重构模型的有向图问题如此重要和具有创新性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号