首页> 外文期刊>Parallel Computing >Efficient compiler and run-time support for parallel irregular reductions
【24h】

Efficient compiler and run-time support for parallel irregular reductions

机译:高效的编译器和运行时支持,可并行进行不规则减少

获取原文
获取原文并翻译 | 示例

摘要

Many scientific applications are comprised of irregular reductions on large data sets. In shared-memory parallel programs, these irregular reductions are typically computed in par- allel using replicated buffers, then combined using synchronization. We develop LocAL- WRITE, a new technique which partitions irregular reductions so that each processor computes values only for locally assigned data, eliminating the need for buffers or synchro- nized writes. Computation is replicated if its results are needed on multiple processors. We experimentally evaluate its performance for three irregular codes on a software DSM running on a distributed-memory multiprocessor and two shared-memory multiprocessors while varying connectivity, locality, and adaptivity. Results show LocALWRITE improves perfor- mance significantly compared to using replicated buffers, and can match or exceed explicit message-passing gather/scatter for applications with low locality or high adaptivity.
机译:许多科学应用包括对大数据集的不规则归约。在共享内存并行程序中,通常使用复制的缓冲区并行计算这些不规则的缩减,然后使用同步进行组合。我们开发了LocALWRITE,这是一种对不规则缩减进行划分的新技术,因此每个处理器仅针对本地分配的数据计算值,从而消除了对缓冲区或同步写入的需求。如果需要在多个处理器上使用计算结果,则复制该计算。我们通过在分布式内存多处理器和两个共享内存多处理器上运行的软件DSM上,对三个不规则代码进行实验性评估,同时改变了连接性,局部性和适应性。结果表明,与使用复制缓冲区相比,LocALWRITE可以显着提高性能,对于局部性低或适应性强的应用程序,LocALWRITE可以匹配或超过显式的消息传递收集/分散。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号