首页> 外文期刊>Parallel Computing >Optimal parallelization of a recursive algorithm for triangular matrix inversion on MIMD computers
【24h】

Optimal parallelization of a recursive algorithm for triangular matrix inversion on MIMD computers

机译:MIMD计算机上三角矩阵求逆的递归算法的最佳并行化

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the parallelization of a recursive algorithm for triangular matrix ill- version (TMI), using the “divide and conquer” paradigm. For a (large scale) matrix of size n = m2~k (m, k ≥ 1) and p = 2~q (≤ n/2) available processors, we first construct an adequate 2-phases task segmentation and inducing a balanced layered task graph. Then, we design a greedy scheduling leading to a cost optimal parallel algorithm. i.e. whose efficiency is equal to 1 for large n. The practical interest of the contribution is proven through an experimental study of two versions of the original algorithm on an IBM SP1 distributed memory multi- processor.
机译:本文使用“分而治之”范式研究三角矩阵病态版本(TMI)的递归算法的并行化。对于大小为n = m2〜k(m,k≥1)和p = 2〜q(≤n / 2)可用处理器的(大规模)矩阵,我们首先构造一个足够的两阶段任务分割并得出一个平衡的分层任务图。然后,我们设计了一种贪婪调度,从而产生了成本最优的并行算法。即,对于大n,其效率等于1。通过在IBM SP1分布式内存多处理器上对原始算法的两个版本进行实验研究,证明了这一贡献的实践意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号