首页> 外文期刊>Parallel Computing >Fast solution of large N x N matrix equations in an MIMD-SIMD Hybrid System
【24h】

Fast solution of large N x N matrix equations in an MIMD-SIMD Hybrid System

机译:MIMD-SIMD混合系统中大N x N矩阵方程的快速求解

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new high-speed computation algorithm for solving a large NxN matrix system using the MIMD-SIMD Hybrid System. The MIMD-SIMD Hybrid System (also denoted as Hybrid System in this paper) is a new parallel architecture consisting of a combination of Cluster of Workstations (COWs) and SIMD systems working concurrently to produce an optimal parallel computation. We first introduce our prototype SIMD system and our Hybrid System setup before presenting how it can be implemented to find the unknowns in a large N x N linear matrix equation system using the Gauss-LU algorithm. This algorithm basically performs the 'Divide and Conquer' approach by breaking down the large N x N matrix system into a manageable 32 x 32 matrix for fast computation.
机译:在本文中,我们提出了一种新的高速计算算法,用于使用MIMD-SIMD混合系统求解大型NxN矩阵系统。 MIMD-SIMD混合系统(在本文中也称为混合系统)是一种新的并行体系结构,由工作站集群(COW)和SIMD系统的组合组成,这些系统同时工作以产生最佳并行计算。在介绍如何使用Gauss-LU算法在大型N x N线性矩阵方程系统中查找未知物之前,我们首先介绍我们的原型SIMD系统和混合系统设置。该算法通过将大型N x N矩阵系统分解为可管理的32 x 32矩阵以进行快速计算,从而基本执行“分而治之”的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号