首页> 外文期刊>Parallel Computing >Predicting the execution times of parallel-independent programs using Pearson distributions
【24h】

Predicting the execution times of parallel-independent programs using Pearson distributions

机译:使用Pearson分布预测并行独立程序的执行时间

获取原文
获取原文并翻译 | 示例

摘要

Predicting the execution time of parallel programs involves computing the maximum or minimum of the execution times of the tasks involved in the parallel computation. We present a method to accurately compute the distribution of the largest (Max) and the smallest (Min) execution time of the composite of a number of parallel programming tasks, each having an independent, stochastic, arbitrary workload. The Max function applies to the general case that the composite task completes at the time its longest constituent task terminates. The Min function applies when the completion of its shortest task terminates the whole parallel process, such as in a parallel searching program. Both the Min and Max density function of a constituent task are characterized in terms of a Pearson distribution. Due to its accuracy, the presented method is especially of interest when the performance of time critical parallel applications must be derived. Both prediction methods are tested against three well-known distributions. Furthermore, the Max prediction method is also tested against a number of measured real-life data parallel programs with different degree of parallelism. The results show excellent accuracy of better than 1% with a very few exceptions in extreme situations.
机译:预测并行程序的执行时间涉及计算并行计算中所涉及任务的最大或最小执行时间。我们提出了一种方法,可以准确地计算多个并行编程任务的合成的最大(最大)执行时间和最小(最小)执行时间的分布,每个任务都有一个独立的,随机的,任意的工作量。 Max函数适用于复合任务在其最长的组成任务终止时完成的一般情况。当其最短任务的完成终止整个并行过程时(例如在并行搜索程序中),将应用Min函数。组成任务的最小和最大密度函数均以Pearson分布为特征。由于其准确性,当必须导出对时间要求严格的并行应用程序的性能时,提出的方法尤为重要。两种预测方法都针对三种众所周知的分布进行了测试。此外,还针对具有不同并行度的许多测量的实际数据并行程序对Max预测方法进行了测试。结果表明,极好的精度优于1%,在极端情况下很少有例外。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号