首页> 外文期刊>Parallel Computing >Scalable line and plane relaxation in a parallel structured multigrid solver
【24h】

Scalable line and plane relaxation in a parallel structured multigrid solver

机译:并联结构化的Multigrid求解器中的可扩展线和平面松弛

获取原文
获取原文并翻译 | 示例

摘要

The efficient solution of sparse, linear systems that arise through the discretization of partial differential equations remains a key challenge for a range of high performance scientific simulations. One approach for reducing data movement and improving performance is by exposing and exploiting structure in a problem through the use of robust structured multilevel solvers. By choosing coarsening that preserves the structure of the problem, these methods maintain efficient structured computation and communication throughout the multigrid hierarchy. However, when coarsening is not permitted to be dependent on the operator, anisotropy must be addressed by the smoother - producing error compatible for coarse-grid correction with structured coarsening. In this paper, the components required in a scalable parallel structured solver are described with a focus on memory and communication efficiency of robust smoothers. While the implementation of communication and memory reduction techniques in smoothers integrated in a complete 3D solver present a significant engineering challenge, a novel approach is proposed that addresses these challenges systematically through a change to the solver's execution model. Enabled by user-level threading paired with a set of data and communication abstractions, this approach permits seamless aggregation of communication in plane smoothers - directly reusing code for a 2D distributed multilevel cycle. Results show an effective reduction in communication costs for coarse-grid problems, and result in a speedup of 8.7x in smoothing routines shown in Fig. 12 using this approach. This produces a significant improvement to strong scalability while maintaining favorable weak scaling behavior. Finally, a parallel scaling study using a series of refined meshes is included that demonstrates the effectiveness of this approach in an application of interest.
机译:通过部分微分方程的离散化而产生的稀疏线性系统的有效解仍然是一系列高性能科学模拟的关键挑战。一种降低数据移动和提高性能的一种方法是通过使用稳健的结构化的多级求解器在问题上暴露和利用结构。通过选择保留问题结构的粗化,这些方法在整个多区层次结构中保持有效的结构化计算和通信。然而,当不允许缩进依赖于操作员时,必须通过与结构粗化的粗栅校正兼容的更良好的产生误差来解决各向异性。在本文中,描述了可伸缩的并联结构求解器所需的组件,其专注于稳健的时光的存储器和通信效率。虽然在完整的3D求解器中集成的SMOOTHERS中的通信和记忆减少技术的实施具有重要的工程挑战,但提出了一种新的方法,以通过对求解器的执行模型的改变系统地解决这些挑战。通过用户级线程与一组数据和通信抽象配对,这种方法允许在平面Smoothers中的通信无缝聚合 - 直接重用用于2D分布式多级循环的代码。结果显示粗略网格问题的通信成本有效降低,并在图4所示的平滑例程中产生8.7倍的加速。12使用这种方法。这产生了强大的可扩展性的显着改善,同时保持有利的弱缩放行为。最后,包括使用一系列精制网格的平行缩放研究,其展示了这种方法在兴趣的应用中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号