首页> 外文期刊>Parallel Computing >Parallel Dichotomy Algorithm for solving tridiagonal system of linear equations with multiple right-hand sides
【24h】

Parallel Dichotomy Algorithm for solving tridiagonal system of linear equations with multiple right-hand sides

机译:求解带有多个右侧的线性方程组的三对角线系统的并行二分法算法

获取原文
获取原文并翻译 | 示例

摘要

A parallel algorithm for solving a series of matrix equations with a constant tridiagonal matrix and different right-hand sides is proposed and studied. The process of solving the problem is represented in two steps. The first preliminary step is calculating some rows of the inverse matrix of system of linear algebraic equations. The second step consists in calculating solutions for all right-hand sides. For reducing the communication interactions, based on the formulated and proved the main Gaussian Parallel Elimination Theorem for tridiagonal system of equations, we propose an original algorithm for calculating share components of the solution vector. Theoretical estimates validating the efficiency of the approach for both the common- and distributed-memory supercomputers are obtained. Direct and iterative methods of solving a 2D Poisson equation, which include procedures of tridiagonal matrix inversion, are realized using the MPI paradigm. Results of computational experiments on a multicomputer demonstrate a high efficiency and scalability of the parallel Dichotomy Algorithm.
机译:提出并研究了求解具有恒定三对角矩阵和右手边的一系列矩阵方程的并行算法。解决问题的过程分为两个步骤。第一步是计算线性代数方程组逆矩阵的某些行。第二步是计算所有右侧的解。为了减少通信交互作用,在建立和证明三对角方程组的主要高斯并行消除定理的基础上,我们提出了一种用于计算解矢量份额分量的原始算法。理论验证获得了验证通用和分布式内存超级计算机的方法的效率。使用MPI范例实现了求解二维Poisson方程的直接和迭代方法,其中包括三对角矩阵求逆的过程。在多台计算机上进行的计算实验结果证明了并行二分法算法的高效性和可扩展性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号