首页> 外文期刊>Journal of Parallel and Distributed Computing >A highly scalable parallel algorithm for solving Toeplitz tridiagonal systems of linear equations
【24h】

A highly scalable parallel algorithm for solving Toeplitz tridiagonal systems of linear equations

机译:求解Toeplitz三对角线性方程组的高度可扩展并行算法

获取原文
获取原文并翻译 | 示例

摘要

Based on a modification of the dichotomy algorithm, we propose a novel parallel procedure for solving tridiagonal systems of equations with Toeplitz matrices. Taking the structure of the Toeplitz matrices, we may substantially reduce the number of the preliminary calculations of the dichotomy algorithm, which makes possible toefficiently solve systems of linear equations with both one and several right-hand sides. On examples of solving the 2D Poisson equation by the variable separation method and the 3D Poisson equation by a combination of the alternating direction implicit and the variable separation methods we show that the computation accuracy is comparable with the sequential version of the Thomas method, the dependence of the speedup on the number of processors being almost linear. The proposed modification is aimed at parallel implementation of a broad class of numerical methods including the Toeplitz tridiagonal matrices inversion.
机译:基于对二分法算法的修改,我们提出了一种新颖的并行程序,用于求解具有Toeplitz矩阵的方程的对角线方程组。通过采用Toeplitz矩阵的结构,我们可以大大减少二分法算法的初步计算数量,从而有可能有效地求解具有一个或多个右侧的线性方程组。在通过可变分离法求解2D泊松方程和通过交替方向隐式和变量分离法的组合求解3D泊松方程的示例中,我们证明了计算精度可与托马斯方法的顺序版本相媲美,加速对处理器数量的影响几乎是线性的。拟议的修改旨在并行实现包括Toeplitz三对角矩阵反演在内的各种数值方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号