首页> 外文期刊>Parallel Computing >Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques
【24h】

Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques

机译:平行反应分子动力学:数值方法和算法技术

获取原文
获取原文并翻译 | 示例

摘要

Molecular dynamics modeling has provided a powerful tool for simulating and understanding diverse systems - ranging from materials processes to biophysical phenomena. Parallel formulations of these methods have been shown to be among the most scalable scientific computing applications. Many instances of this class of methods rely on a static bond structure for molecules, rendering them infeasible for reactive systems. Recent work on reactive force fields has resulted in the development of ReaxFF, a novel bond order potential that bridges quantum-scale and classical MD approaches by explicitly modeling bond activity (reactions) and charge equilibration. These aspects of ReaxFF pose significant challenges from a computational standpoint, both in sequential and parallel contexts. Evolving bond structure requires efficient dynamic data structures. Minimizing electrostatic energy through charge equilibration requires the solution of a large sparse linear system with a shielded electrostatic kernel at each sub-femtosecond long time-step. In this context, reaching spatio-temporal scales of tens of nanometers and nanoseconds, where phenomena of interest can be observed, poses significant challenges.In this paper, we present the design and implementation details of the Purdue Reactive Molecular Dynamics code, PuReMD. PuReMD has been demonstrated to be highly efficient (in terms of processor performance) and scalable. It extends current spatio-temporal simulation capability for reactive atomistic systems by over an order of magnitude. It incorporates efficient dynamic data structures, algorithmic optimizations, and effective solvers to deliver low per-time-step simulation time, with a small memory footprint. PuReMD is comprehensively validated for performance and accuracy on up to 3375 cores on a commodity cluster (Hera at LLNL-OCF). Potential performance bottlenecks to scalability beyond our experiments have also been analyzed. PuReMD is available over the public domain and has been used to model diverse systems, ranging from strain relaxation in Si-Ge nanobars, water-silica surface interaction, and oxidative stress in lipid bilayers (bio-membranes).
机译:分子动力学建模提供了一个强大的工具,可以模拟和理解各种系统-从材料过程到生物物理现象。这些方法的并行公式已被证明是最可扩展的科学计算应用程序之一。这类方法的许多实例都依赖于分子的静态键结构,从而使其不适用于反应性系统。最近在反作用力场上的工作导致了ReaxFF的发展,ReaxFF是一种新型的键序势能,它通过显式地模拟键活性(反应)和电荷平衡来桥接量子尺度和经典MD方法。从计算的角度来看,ReaxFF的这些方面在顺序和并行上下文中都构成了重大挑战。不断发展的债券结构需要有效的动态数据结构。通过电荷平衡使静电能最小化,需要解决一个大型的稀疏线性系统的问题,该系统在每个亚飞秒的长时间步长处都具有屏蔽的静电核。在这种情况下,时空尺度达到数十纳米和纳秒,可以观察到感兴趣的现象,这构成了重大挑战。本文介绍了普渡反应分子动力学代码PuReMD的设计和实现细节。 PuReMD已被证明具有很高的效率(就处理器性能而言)并且具有可扩展性。它将反应性原子系统的当前时空仿真功能扩展了一个数量级。它结合了有效的动态数据结构,算法优化和有效的求解器,以缩短了每步仿真时间,并减少了内存占用。 PuReMD经过了商品集群(LLNL-OCF的Hera)上多达3375个内核的性能和准确性的全面验证。还分析了超出我们的实验的可伸缩性的潜在性能瓶颈。 PuReMD可在公共领域获得,并已用于建模各种系统,范围从Si-Ge纳米棒中的应变松弛,水-硅胶表面相互作用以及脂质双层(生物膜)中的氧化应激。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号