首页> 外文期刊>Parallel Computing >PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time code generation
【24h】

PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time code generation

机译:PyCUDA和PyOpenCL:一种基于脚本的GPU运行时代码生成方法

获取原文
获取原文并翻译 | 示例

摘要

High-performance computing has recently seen a surge of interest in heterogeneous sys tems, with an emphasis on modern Graphics Processing Units (CPUs). These devices offer tremendous potential for performance and efficiency in important large-scale applications of computational science. However, exploiting this potential can be challenging, as one must adapt to the specialized and rapidly evolving computing environment currently exhibited by CPUs. One way of addressing this challenge is to embrace better techniques and develop tools tailored to their needs. This article presents one simple technique, GPU run-time code generation (RTCG), along with PyCUDA and PyOpenCL, two open-source tool kits that supports this technique. In introducing PyCUDA and PyOpenCL, this article proposes the combination of a dynamic, high-level scripting language with the massive performance of a GPU as a com pelling two-tiered computing platform, potentially offering significant performance and productivity advantages over conventional single-tier, static systems. The concept of RTCG is simple and easily implemented using existing, robust infrastructure. Nonetheless it is powerful enough to support (and encourage) the creation of custom application-specific tools by its users. The premise of the paper is illustrated by a wide range of examples where the technique has been applied with considerable success.
机译:高性能计算最近对异构系统产生了浓厚的兴趣,重点是现代图形处理单元(CPU)。这些设备在计算科学的重要大规模应用中具有巨大的性能和效率潜力。但是,利用这一潜力可能是一个挑战,因为必须适应CPU当前所展示的专门且快速发展的计算环境。解决这一挑战的一种方法是采用更好的技术并开发适合其需求的工具。本文介绍了一种简单的技术GPU运行时代码生成(RTCG),以及支持该技术的两个开源工具包PyCUDA和PyOpenCL。在介绍PyCUDA和PyOpenCL时,本文提出了将动态,高级脚本语言与GPU的强大性能相结合的引人注目的两层计算平台的建议,与传统的单层相比,潜在地提供了显着的性能和生产力优势,静态系统。 RTCG的概念很简单,并且可以使用现有的强大基础结构轻松实现。尽管如此,它的功能足以支持(并鼓励)用户创建自定义的应用程序专用工具。本文的前提是通过广泛的示例说明的,其中已成功应用了该技术。

著录项

  • 来源
    《Parallel Computing》 |2012年第3期|p.157-174|共18页
  • 作者单位

    Courant Institute of Mathematical Sciences, New York University, NY 10012, United States;

    McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States,Rowland Institute, Harvard University, Cambridge, MA 02142, United States;

    Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, United States;

    Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, United States;

    Vision Science Graduate Program, University of California, Berkeley, CA 94720, United States,Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA 94720, United States;

    Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    GPU; many-core; code generation; automated tuning; software engineering; high-level languages; massive parallelism; single-instruction multiple-data; CUDA; OpenCL;

    机译:GPU;多核代码生成;自动调整;软件工程;高级语言;大规模并行性;单指令多数据;CUDA;OpenCL的;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号