首页> 外文期刊>Parallel Computing >Leveraging task-parallelism in message-passing dense matrix factorizations using SMPSs
【24h】

Leveraging task-parallelism in message-passing dense matrix factorizations using SMPSs

机译:在使用SMPS的消息传递密集矩阵分解中利用任务并行性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate how to exploit task-parallelism during the execution of the Cholesky factorization on clusters of multicore processors with the SMPSs programming model. Our analysis reveals that the major difficulties in adapting the code for this operation in ScaLAPACK to SMPSs lie in algorithmic restrictions and the semantics of the SMPSs programming model, but also that they both can be overcome with a limited programming effort. The experimental results report considerable gains in performance and scalability of the routine parallelized with SMPSs when compared with conventional approaches to execute the original ScaLAPACK implementation in parallel as well as two recent message-passing routines for this operation.In summary, our study opens the door to the possibility of reusing message-passing legacy codes/libraries for linear algebra, by introducing up-to-date techniques like dynamic out-of-order scheduling that significantly upgrade their performance, while avoiding a costly rewrite/reimplementation.
机译:在本文中,我们研究了使用SMPSs编程模型在多核处理器集群上执行Cholesky因式分解期间如何利用任务并行性。我们的分析表明,使ScaLAPACK中的此操作的代码适应SMPS的主要困难在于算法限制和SMPS编程模型的语义,但它们都可以通过有限的编程工作来克服。实验结果表明,与传统方法并行执行原始ScaLAPACK实施的常规方法以及此操作的两个最新消息传递例程相比,与SMPS并行化的例程在性能和可伸缩性方面均获得了可观的收益。通过引入最新技术(例如动态无序调度)来显着提高其性能,同时又避免了昂贵的重写/重新实现,从而为线性代数重用了消息传递旧代码/库以用于线性代数的可能性。

著录项

  • 来源
    《Parallel Computing》 |2014年第6期|113-128|共16页
  • 作者单位

    Centre Internacional de Metodes Numerics en Enginyeria (CIMNE), Parc Mediterrani de la Tecnologia, Esteve Terradas 5, 08860 Castelldefels, Spain,Universitat Politecnica de Catalunya, Jordi Girona 1-3, Edifici C1, 08034 Barcelona, Spain;

    Edinburgh Parallel Computing Centre, University of Edinburgh, UK;

    Barcelona Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain,Artificial Intelligence Research Institute (IIAA), Spanish National Research Council (CSIC), Spain;

    Depto. de Ingenieria y Ciencia de Computadores, Universidad Jaume Ⅰ (UJI), 12.071 Castellon, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Task parallelism; Message-passing numerical libraries; Linear algebra; Clusters of multi-core processors;

    机译:任务并行性;消息传递数字库;线性代数多核处理器集群;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号